Induced hypersymplectic and hyperkähler structures on the dual of a Lie algebroid
Autor(a) principal: | |
---|---|
Data de Publicação: | 2014 |
Outros Autores: | |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10316/44545 https://doi.org/10.1142/S0219887814600305 |
Resumo: | We show that every hypersymplectic structure on a Lie algebroid A determines a hypersymplectic and a hyperkähler structure on the dual A*. This result is illustrated with an example on the Lie algebroid T(H^3 × I), where H^3 is the Heisenberg group. |
id |
RCAP_8a3c19e017e7d3aabf60c0fbe5b88889 |
---|---|
oai_identifier_str |
oai:estudogeral.uc.pt:10316/44545 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Induced hypersymplectic and hyperkähler structures on the dual of a Lie algebroidWe show that every hypersymplectic structure on a Lie algebroid A determines a hypersymplectic and a hyperkähler structure on the dual A*. This result is illustrated with an example on the Lie algebroid T(H^3 × I), where H^3 is the Heisenberg group.World Scientific Publishing2014info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlehttp://hdl.handle.net/10316/44545http://hdl.handle.net/10316/44545https://doi.org/10.1142/S0219887814600305https://doi.org/10.1142/S0219887814600305enghttp://www.worldscientific.com/doi/abs/10.1142/S0219887814600305Antunes, PauloNunes da Costa, Joana Margaridainfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2021-06-29T10:03:20Zoai:estudogeral.uc.pt:10316/44545Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T20:53:24.583331Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Induced hypersymplectic and hyperkähler structures on the dual of a Lie algebroid |
title |
Induced hypersymplectic and hyperkähler structures on the dual of a Lie algebroid |
spellingShingle |
Induced hypersymplectic and hyperkähler structures on the dual of a Lie algebroid Antunes, Paulo |
title_short |
Induced hypersymplectic and hyperkähler structures on the dual of a Lie algebroid |
title_full |
Induced hypersymplectic and hyperkähler structures on the dual of a Lie algebroid |
title_fullStr |
Induced hypersymplectic and hyperkähler structures on the dual of a Lie algebroid |
title_full_unstemmed |
Induced hypersymplectic and hyperkähler structures on the dual of a Lie algebroid |
title_sort |
Induced hypersymplectic and hyperkähler structures on the dual of a Lie algebroid |
author |
Antunes, Paulo |
author_facet |
Antunes, Paulo Nunes da Costa, Joana Margarida |
author_role |
author |
author2 |
Nunes da Costa, Joana Margarida |
author2_role |
author |
dc.contributor.author.fl_str_mv |
Antunes, Paulo Nunes da Costa, Joana Margarida |
description |
We show that every hypersymplectic structure on a Lie algebroid A determines a hypersymplectic and a hyperkähler structure on the dual A*. This result is illustrated with an example on the Lie algebroid T(H^3 × I), where H^3 is the Heisenberg group. |
publishDate |
2014 |
dc.date.none.fl_str_mv |
2014 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10316/44545 http://hdl.handle.net/10316/44545 https://doi.org/10.1142/S0219887814600305 https://doi.org/10.1142/S0219887814600305 |
url |
http://hdl.handle.net/10316/44545 https://doi.org/10.1142/S0219887814600305 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
http://www.worldscientific.com/doi/abs/10.1142/S0219887814600305 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.publisher.none.fl_str_mv |
World Scientific Publishing |
publisher.none.fl_str_mv |
World Scientific Publishing |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799133821128409088 |