Hypersymplectic structures with torsion on Lie algebroids

Detalhes bibliográficos
Autor(a) principal: Antunes, Paulo
Data de Publicação: 2016
Outros Autores: Nunes da Costa, Joana Margarida
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10316/44547
https://doi.org/10.1016/j.geomphys.2016.01.010
Resumo: Hypersymplectic structures with torsion on Lie algebroids are investigated. We show that each hypersymplectic structure with torsion on a Lie algebroid determines three Nijenhuis morphisms. From a contravariant point of view, these structures are twisted Poisson structures. We prove the existence of a one-to-one correspondence between hypersymplectic structures with torsion and hyperkähler structures with torsion. We show that given a Lie algebroid with a hypersymplectic structure with torsion, the deformation of the Lie algebroid structure by any of the transition morphisms does not affect the hypersymplectic structure with torsion. We also show that if a triplet of 2-forms is a hypersymplectic structure with torsion on a Lie algebroid A, then the triplet of the inverse bivectors is a hypersymplectic structure with torsion for a certain Lie algebroid structure on the dual A*, and conversely. Examples of hypersymplectic structures with torsion are included.
id RCAP_1c941a3982932d6dd7df1fd124c42247
oai_identifier_str oai:estudogeral.uc.pt:10316/44547
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Hypersymplectic structures with torsion on Lie algebroidsHypersymplectic structures with torsion on Lie algebroids are investigated. We show that each hypersymplectic structure with torsion on a Lie algebroid determines three Nijenhuis morphisms. From a contravariant point of view, these structures are twisted Poisson structures. We prove the existence of a one-to-one correspondence between hypersymplectic structures with torsion and hyperkähler structures with torsion. We show that given a Lie algebroid with a hypersymplectic structure with torsion, the deformation of the Lie algebroid structure by any of the transition morphisms does not affect the hypersymplectic structure with torsion. We also show that if a triplet of 2-forms is a hypersymplectic structure with torsion on a Lie algebroid A, then the triplet of the inverse bivectors is a hypersymplectic structure with torsion for a certain Lie algebroid structure on the dual A*, and conversely. Examples of hypersymplectic structures with torsion are included.Elsevier2016info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlehttp://hdl.handle.net/10316/44547http://hdl.handle.net/10316/44547https://doi.org/10.1016/j.geomphys.2016.01.010https://doi.org/10.1016/j.geomphys.2016.01.010enghttps://www.sciencedirect.com/science/article/pii/S0393044016300055Antunes, PauloNunes da Costa, Joana Margaridainfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2021-06-29T10:03:01Zoai:estudogeral.uc.pt:10316/44547Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T20:53:24.501419Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Hypersymplectic structures with torsion on Lie algebroids
title Hypersymplectic structures with torsion on Lie algebroids
spellingShingle Hypersymplectic structures with torsion on Lie algebroids
Antunes, Paulo
title_short Hypersymplectic structures with torsion on Lie algebroids
title_full Hypersymplectic structures with torsion on Lie algebroids
title_fullStr Hypersymplectic structures with torsion on Lie algebroids
title_full_unstemmed Hypersymplectic structures with torsion on Lie algebroids
title_sort Hypersymplectic structures with torsion on Lie algebroids
author Antunes, Paulo
author_facet Antunes, Paulo
Nunes da Costa, Joana Margarida
author_role author
author2 Nunes da Costa, Joana Margarida
author2_role author
dc.contributor.author.fl_str_mv Antunes, Paulo
Nunes da Costa, Joana Margarida
description Hypersymplectic structures with torsion on Lie algebroids are investigated. We show that each hypersymplectic structure with torsion on a Lie algebroid determines three Nijenhuis morphisms. From a contravariant point of view, these structures are twisted Poisson structures. We prove the existence of a one-to-one correspondence between hypersymplectic structures with torsion and hyperkähler structures with torsion. We show that given a Lie algebroid with a hypersymplectic structure with torsion, the deformation of the Lie algebroid structure by any of the transition morphisms does not affect the hypersymplectic structure with torsion. We also show that if a triplet of 2-forms is a hypersymplectic structure with torsion on a Lie algebroid A, then the triplet of the inverse bivectors is a hypersymplectic structure with torsion for a certain Lie algebroid structure on the dual A*, and conversely. Examples of hypersymplectic structures with torsion are included.
publishDate 2016
dc.date.none.fl_str_mv 2016
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10316/44547
http://hdl.handle.net/10316/44547
https://doi.org/10.1016/j.geomphys.2016.01.010
https://doi.org/10.1016/j.geomphys.2016.01.010
url http://hdl.handle.net/10316/44547
https://doi.org/10.1016/j.geomphys.2016.01.010
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv https://www.sciencedirect.com/science/article/pii/S0393044016300055
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Elsevier
publisher.none.fl_str_mv Elsevier
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799133821125263360