Interobserver variability among expert readers quantifying plaque volume and plaque characteristics on coronary CT angiography
Autor(a) principal: | |
---|---|
Data de Publicação: | 2022 |
Outros Autores: | , , , , , , , , , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10362/143609 |
Resumo: | Publisher Copyright: © 2022 |
id |
RCAP_8af4f65da85a9d55c8dc99ac54959138 |
---|---|
oai_identifier_str |
oai:run.unl.pt:10362/143609 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Interobserver variability among expert readers quantifying plaque volume and plaque characteristics on coronary CT angiographya CLARIFY trial sub-studyArtificial intelligenceAtherosclerosisCCTACoronary artery diseaseCoronary computed tomography angiographyExpert readersHigh risk plaquePlaque volumeQCTRadiology Nuclear Medicine and imagingPublisher Copyright: © 2022Background: The difference between expert level (L3) reader and artificial intelligence (AI) performance for quantifying coronary plaque and plaque components is unknown. Objective: This study evaluates the interobserver variability among expert readers for quantifying the volume of coronary plaque and plaque components on coronary computed tomographic angiography (CCTA) using an artificial intelligence enabled quantitative CCTA analysis software as a reference (AI-QCT). Methods: This study uses CCTA imaging obtained from 232 patients enrolled in the CLARIFY (CT EvaLuation by ARtificial Intelligence For Atherosclerosis, Stenosis and Vascular MorphologY) study. Readers quantified overall plaque volume and the % breakdown of noncalcified plaque (NCP) and calcified plaque (CP) on a per vessel basis. Readers categorized high risk plaque (HRP) based on the presence of low-attenuation-noncalcified plaque (LA-NCP) and positive remodeling (PR; ≥1.10). All CCTAs were analyzed by an FDA-cleared software service that performs AI-driven plaque characterization and quantification (AI-QCT) for comparison to L3 readers. Reader generated analyses were compared among readers and to AI-QCT generated analyses. Results: When evaluating plaque volume on a per vessel basis, expert readers achieved moderate to high interobserver consistency with an intra-class correlation coefficient of 0.78 for a single reader score and 0.91 for mean scores. There was a moderate trend between readers 1, 2, and 3 and AI with spearman coefficients of 0.70, 0.68 and 0.74, respectively. There was high discordance between readers and AI plaque component analyses. When quantifying %NCP v. %CP, readers 1, 2, and 3 achieved a weighted kappa coefficient of 0.23, 0.34 and 0.24, respectively, compared to AI with a spearman coefficient of 0.38, 0.51, and 0.60, respectively. The intra-class correlation coefficient among readers for plaque composition assessment was 0.68. With respect to HRP, readers 1, 2, and 3 achieved a weighted kappa coefficient of 0.22, 0.26, and 0.17, respectively, and a spearman coefficient of 0.36, 0.35, and 0.44, respectively. Conclusion: Expert readers performed moderately well quantifying total plaque volumes with high consistency. However, there was both significant interobserver variability and high discordance with AI-QCT when quantifying plaque composition.NOVA Medical School|Faculdade de Ciências Médicas (NMS|FCM)RUNJonas, Rebecca A.Weerakoon, ShanekeFisher, RebeccaGriffin, William F.Kumar, VishakRahban, HabibPinto Marques, HugoKarlsberg, Ronald P.Jennings, Robert S.Crabtree, Tami R.Choi, Andrew D.Earls, James P.2022-09-08T22:49:40Z2022-112022-11-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article7application/pdfhttp://hdl.handle.net/10362/143609eng0899-7071PURE: 46202899https://doi.org/10.1016/j.clinimag.2022.08.005info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-10-21T01:36:26Zoai:run.unl.pt:10362/143609Portal AgregadorONGhttps://www.rcaap.pt/oai/openairemluisa.alvim@gmail.comopendoar:71602024-10-21T01:36:26Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Interobserver variability among expert readers quantifying plaque volume and plaque characteristics on coronary CT angiography a CLARIFY trial sub-study |
title |
Interobserver variability among expert readers quantifying plaque volume and plaque characteristics on coronary CT angiography |
spellingShingle |
Interobserver variability among expert readers quantifying plaque volume and plaque characteristics on coronary CT angiography Jonas, Rebecca A. Artificial intelligence Atherosclerosis CCTA Coronary artery disease Coronary computed tomography angiography Expert readers High risk plaque Plaque volume QCT Radiology Nuclear Medicine and imaging |
title_short |
Interobserver variability among expert readers quantifying plaque volume and plaque characteristics on coronary CT angiography |
title_full |
Interobserver variability among expert readers quantifying plaque volume and plaque characteristics on coronary CT angiography |
title_fullStr |
Interobserver variability among expert readers quantifying plaque volume and plaque characteristics on coronary CT angiography |
title_full_unstemmed |
Interobserver variability among expert readers quantifying plaque volume and plaque characteristics on coronary CT angiography |
title_sort |
Interobserver variability among expert readers quantifying plaque volume and plaque characteristics on coronary CT angiography |
author |
Jonas, Rebecca A. |
author_facet |
Jonas, Rebecca A. Weerakoon, Shaneke Fisher, Rebecca Griffin, William F. Kumar, Vishak Rahban, Habib Pinto Marques, Hugo Karlsberg, Ronald P. Jennings, Robert S. Crabtree, Tami R. Choi, Andrew D. Earls, James P. |
author_role |
author |
author2 |
Weerakoon, Shaneke Fisher, Rebecca Griffin, William F. Kumar, Vishak Rahban, Habib Pinto Marques, Hugo Karlsberg, Ronald P. Jennings, Robert S. Crabtree, Tami R. Choi, Andrew D. Earls, James P. |
author2_role |
author author author author author author author author author author author |
dc.contributor.none.fl_str_mv |
NOVA Medical School|Faculdade de Ciências Médicas (NMS|FCM) RUN |
dc.contributor.author.fl_str_mv |
Jonas, Rebecca A. Weerakoon, Shaneke Fisher, Rebecca Griffin, William F. Kumar, Vishak Rahban, Habib Pinto Marques, Hugo Karlsberg, Ronald P. Jennings, Robert S. Crabtree, Tami R. Choi, Andrew D. Earls, James P. |
dc.subject.por.fl_str_mv |
Artificial intelligence Atherosclerosis CCTA Coronary artery disease Coronary computed tomography angiography Expert readers High risk plaque Plaque volume QCT Radiology Nuclear Medicine and imaging |
topic |
Artificial intelligence Atherosclerosis CCTA Coronary artery disease Coronary computed tomography angiography Expert readers High risk plaque Plaque volume QCT Radiology Nuclear Medicine and imaging |
description |
Publisher Copyright: © 2022 |
publishDate |
2022 |
dc.date.none.fl_str_mv |
2022-09-08T22:49:40Z 2022-11 2022-11-01T00:00:00Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10362/143609 |
url |
http://hdl.handle.net/10362/143609 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
0899-7071 PURE: 46202899 https://doi.org/10.1016/j.clinimag.2022.08.005 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
7 application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
mluisa.alvim@gmail.com |
_version_ |
1817545885638197248 |