id RCAP_d82f3202a6eba58bcf1b5414a20770d2
oai_identifier_str oai:run.unl.pt:10362/134761
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling The effect of scan and patient parameters on the diagnostic performance of AI for detecting coronary stenosis on coronary CT angiographyArtificial intelligenceAtherosclerosisCCTACoronary artery diseaseCoronary computed tomography angiographyImage qualityRadiology Nuclear Medicine and imagingPublisher Copyright: © 2022 The AuthorsObjectives: To determine whether coronary computed tomography angiography (CCTA) scanning, scan preparation, contrast, and patient based parameters influence the diagnostic performance of an artificial intelligence (AI) based analysis software for identifying coronary lesions with ≥50% stenosis. Background: CCTA is a noninvasive imaging modality that provides diagnostic and prognostic benefit to patients with coronary artery disease (CAD). The use of AI enabled quantitative CCTA (AI-QCT) analysis software enhances our diagnostic and prognostic ability, however, it is currently unclear whether software performance is influenced by CCTA scanning parameters. Methods: CCTA and quantitative coronary CT (QCT) data from 303 stable patients (64 ± 10 years, 71% male) from the derivation arm of the CREDENCE Trial were retrospectively analyzed using an FDA-cleared cloud-based software that performs AI-enabled coronary segmentation, lumen and vessel wall determination, plaque quantification and characterization, and stenosis determination. The algorithm's diagnostic performance measures (sensitivity, specificity, and accuracy) for detecting coronary lesions of ≥50% stenosis were determined based on concordance with QCA measurements and subsequently compared across scanning parameters (including scanner vendor, model, single vs dual source, tube voltage, dose length product, gating technique, timing method), scan preparation technique (use of beta blocker, use and dose of nitroglycerin), contrast administration parameters (contrast type, infusion rate, iodine concentration, contrast volume) and patient parameters (heart rate and BMI). Results: Within the patient cohort, 13% demonstrated ≥50% stenosis in 3 vessel territories, 21% in 2 vessel territories, 35% in 1 vessel territory while 32% had <50% stenosis in all vessel territories evaluated by QCA. Average AI analysis time was 10.3 ± 2.7 min. On a per vessel basis, there were significant differences only in sensitivity for ≥50% stenosis based on contrast type (iso-osmolar 70.0% vs non isoosmolar 92.1% p = 0.0345) and iodine concentration (<350 mg/ml 70.0%, 350-369 mg/ml 90.0%, 370–400 mg/ml 90.0%, >400 mg/ml 95.2%; p = 0.0287) in the context of low injection flow rates. On a per patient basis there were no significant differences in AI diagnostic performance measures across all measured scanner, scan technique, patient preparation, contrast, and individual patient parameters. Conclusion: The diagnostic performance of AI-QCT analysis software for detecting moderate to high grade stenosis are unaffected by commonly used CCTA scanning parameters and across a range of common scanning, scanner, contrast and patient variables. Condensed abstract: An AI-enabled quantitative CCTA (AI-QCT) analysis software has been validated as an effective tool for the identification, quantification and characterization of coronary plaque and stenosis through comparison to blinded expert readers and quantitative coronary angiography. However, it is unclear whether CCTA screening parameters related to scanner parameters, scan technique, contrast volume and rate, radiation dose, or a patient's BMI or heart rate at time of scan affect the software's diagnostic measures for detection of moderate to high grade stenosis. AI performance measures were unaffected across a broad range of commonly encountered scanner, patient preparation, scan technique, intravenous contrast and patient parameters.NOVA Medical School|Faculdade de Ciências Médicas (NMS|FCM)RUNJonas, Rebecca A.Barkovich, EmilChoi, Andrew D.Griffin, William F.Riess, JoannaPinto Marques, HugoChang, Hyuk JaeChoi, Jung HyunDoh, Joon HyungHer, Ae YoungKoo, Bon KwonNam, Chang WookPark, Hyung BokShin, Sang HoonCole, JasonGimelli, AlessiaKhan, Muhammad AkramLu, BinGao, YangNabi, FaisalNakazato, RyoSchoepf, U. JosephDriessen, Roel S.Bom, Michiel J.Thompson, Randall C.Jang, James J.Ridner, MichaelRowan, ChrisAvelar, ErickGénéreux, PhilippeKnaapen, Paulde Waard, Guus A.Pontone, GianlucaAndreini, DanieleGuglielmo, MarcoAl-Mallah, Mouaz H.Jennings, Robert S.Crabtree, Tami R.Earls, James P.2022-03-17T23:23:03Z2022-042022-04-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article10application/pdfhttp://hdl.handle.net/10362/134761eng0899-7071PURE: 42050886https://doi.org/10.1016/j.clinimag.2022.01.016info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-10-21T01:36:18Zoai:run.unl.pt:10362/134761Portal AgregadorONGhttps://www.rcaap.pt/oai/openairemluisa.alvim@gmail.comopendoar:71602024-10-21T01:36:18Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv The effect of scan and patient parameters on the diagnostic performance of AI for detecting coronary stenosis on coronary CT angiography
title The effect of scan and patient parameters on the diagnostic performance of AI for detecting coronary stenosis on coronary CT angiography
spellingShingle The effect of scan and patient parameters on the diagnostic performance of AI for detecting coronary stenosis on coronary CT angiography
Jonas, Rebecca A.
Artificial intelligence
Atherosclerosis
CCTA
Coronary artery disease
Coronary computed tomography angiography
Image quality
Radiology Nuclear Medicine and imaging
title_short The effect of scan and patient parameters on the diagnostic performance of AI for detecting coronary stenosis on coronary CT angiography
title_full The effect of scan and patient parameters on the diagnostic performance of AI for detecting coronary stenosis on coronary CT angiography
title_fullStr The effect of scan and patient parameters on the diagnostic performance of AI for detecting coronary stenosis on coronary CT angiography
title_full_unstemmed The effect of scan and patient parameters on the diagnostic performance of AI for detecting coronary stenosis on coronary CT angiography
title_sort The effect of scan and patient parameters on the diagnostic performance of AI for detecting coronary stenosis on coronary CT angiography
author Jonas, Rebecca A.
author_facet Jonas, Rebecca A.
Barkovich, Emil
Choi, Andrew D.
Griffin, William F.
Riess, Joanna
Pinto Marques, Hugo
Chang, Hyuk Jae
Choi, Jung Hyun
Doh, Joon Hyung
Her, Ae Young
Koo, Bon Kwon
Nam, Chang Wook
Park, Hyung Bok
Shin, Sang Hoon
Cole, Jason
Gimelli, Alessia
Khan, Muhammad Akram
Lu, Bin
Gao, Yang
Nabi, Faisal
Nakazato, Ryo
Schoepf, U. Joseph
Driessen, Roel S.
Bom, Michiel J.
Thompson, Randall C.
Jang, James J.
Ridner, Michael
Rowan, Chris
Avelar, Erick
Généreux, Philippe
Knaapen, Paul
de Waard, Guus A.
Pontone, Gianluca
Andreini, Daniele
Guglielmo, Marco
Al-Mallah, Mouaz H.
Jennings, Robert S.
Crabtree, Tami R.
Earls, James P.
author_role author
author2 Barkovich, Emil
Choi, Andrew D.
Griffin, William F.
Riess, Joanna
Pinto Marques, Hugo
Chang, Hyuk Jae
Choi, Jung Hyun
Doh, Joon Hyung
Her, Ae Young
Koo, Bon Kwon
Nam, Chang Wook
Park, Hyung Bok
Shin, Sang Hoon
Cole, Jason
Gimelli, Alessia
Khan, Muhammad Akram
Lu, Bin
Gao, Yang
Nabi, Faisal
Nakazato, Ryo
Schoepf, U. Joseph
Driessen, Roel S.
Bom, Michiel J.
Thompson, Randall C.
Jang, James J.
Ridner, Michael
Rowan, Chris
Avelar, Erick
Généreux, Philippe
Knaapen, Paul
de Waard, Guus A.
Pontone, Gianluca
Andreini, Daniele
Guglielmo, Marco
Al-Mallah, Mouaz H.
Jennings, Robert S.
Crabtree, Tami R.
Earls, James P.
author2_role author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
dc.contributor.none.fl_str_mv NOVA Medical School|Faculdade de Ciências Médicas (NMS|FCM)
RUN
dc.contributor.author.fl_str_mv Jonas, Rebecca A.
Barkovich, Emil
Choi, Andrew D.
Griffin, William F.
Riess, Joanna
Pinto Marques, Hugo
Chang, Hyuk Jae
Choi, Jung Hyun
Doh, Joon Hyung
Her, Ae Young
Koo, Bon Kwon
Nam, Chang Wook
Park, Hyung Bok
Shin, Sang Hoon
Cole, Jason
Gimelli, Alessia
Khan, Muhammad Akram
Lu, Bin
Gao, Yang
Nabi, Faisal
Nakazato, Ryo
Schoepf, U. Joseph
Driessen, Roel S.
Bom, Michiel J.
Thompson, Randall C.
Jang, James J.
Ridner, Michael
Rowan, Chris
Avelar, Erick
Généreux, Philippe
Knaapen, Paul
de Waard, Guus A.
Pontone, Gianluca
Andreini, Daniele
Guglielmo, Marco
Al-Mallah, Mouaz H.
Jennings, Robert S.
Crabtree, Tami R.
Earls, James P.
dc.subject.por.fl_str_mv Artificial intelligence
Atherosclerosis
CCTA
Coronary artery disease
Coronary computed tomography angiography
Image quality
Radiology Nuclear Medicine and imaging
topic Artificial intelligence
Atherosclerosis
CCTA
Coronary artery disease
Coronary computed tomography angiography
Image quality
Radiology Nuclear Medicine and imaging
description Publisher Copyright: © 2022 The Authors
publishDate 2022
dc.date.none.fl_str_mv 2022-03-17T23:23:03Z
2022-04
2022-04-01T00:00:00Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10362/134761
url http://hdl.handle.net/10362/134761
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 0899-7071
PURE: 42050886
https://doi.org/10.1016/j.clinimag.2022.01.016
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv 10
application/pdf
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv mluisa.alvim@gmail.com
_version_ 1817545852597567488