Neural information retrieval for biomedical question-answering

Detalhes bibliográficos
Autor(a) principal: Almeida, Tiago Alexandre Melo
Data de Publicação: 2019
Tipo de documento: Dissertação
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10773/29572
Resumo: At the rate that publicly available biomedical literature grows, current searching systems start to struggle to maintain an acceptable performance. This situation becomes more severe when a question is submitted in natural language format. Moved by this limitation, this dissertation has the main purpose of creating an automatic question answering system applied to the biomedical domain that returns for a given natural language question, the most relevant documents and their relevant snippets. The system was divided into three steps, the first consist in finding potentially relevant documents to the query. In the second step, a more powerful deep neural model will rank these documents, in a way that the query context and meaning is taken into consideration. Additionally, it was been proposed a novel deep neural model that is used in the final two steps of the system. Finally, the snippets that helped the deep neural model to rank the most relevant documents are also extracted. As a way of validation, the system results were compared with the results from this year’s BioASQ challenge, scoring the best result in first batch and third best on the last batch, while staying near to the top in the remaining batches.
id RCAP_8b55d1bc5f584eceaa923aec75774d5f
oai_identifier_str oai:ria.ua.pt:10773/29572
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Neural information retrieval for biomedical question-answeringNeural networksDeep learningInformation RetrievalNeural Information RetrievalStatistical ModelsAt the rate that publicly available biomedical literature grows, current searching systems start to struggle to maintain an acceptable performance. This situation becomes more severe when a question is submitted in natural language format. Moved by this limitation, this dissertation has the main purpose of creating an automatic question answering system applied to the biomedical domain that returns for a given natural language question, the most relevant documents and their relevant snippets. The system was divided into three steps, the first consist in finding potentially relevant documents to the query. In the second step, a more powerful deep neural model will rank these documents, in a way that the query context and meaning is taken into consideration. Additionally, it was been proposed a novel deep neural model that is used in the final two steps of the system. Finally, the snippets that helped the deep neural model to rank the most relevant documents are also extracted. As a way of validation, the system results were compared with the results from this year’s BioASQ challenge, scoring the best result in first batch and third best on the last batch, while staying near to the top in the remaining batches.Ao ritmo que a literatura biomédica publicamente disponível cresce, os sistemas de pesquisa atuais começam a ter dificuldades em manter um desempenho aceitável. Esta situação torna-se mais severa quando uma questão é submetida em linguagem natural. Movido por esta limitação, esta dissertação tem como principal objetivo criar um sistema automático de reposta a perguntas aplicado ao domínio biomédico que retorne, para uma dada questão, os documento mais relevantes e os seus respetivos excertos. O sistema foi dividido em três tarefas, a primeira consiste em encontrar documentos potencialmente relevantes para cada pergunta. No segundo passo, esses documentos são classificados por um modelo neural, que tem em consideração o significado e contexto da pergunta. Por fim, os excertos dos documentos relevantes mais significativos do ponto do vista do modelo neural são extraidos. Adicionalmente, foi proposto um novo modelo neural que é utilizado nas duas últimas tarefas do sistema. Como forma de validação, os resultados do sistema foram comparados com os resultados do desafio BioASQ deste ano, sendo que foi obtido o melhor resultado para o primeiro conjunto de teste e o terceiro melhor para o último conjunto de teste, enquanto que nos restantes os resultados ficaram próximos do topo.2020-10-23T09:54:23Z2019-08-01T00:00:00Z2019-08info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10773/29572engAlmeida, Tiago Alexandre Meloinfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-02-22T11:57:14Zoai:ria.ua.pt:10773/29572Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T03:01:52.843783Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Neural information retrieval for biomedical question-answering
title Neural information retrieval for biomedical question-answering
spellingShingle Neural information retrieval for biomedical question-answering
Almeida, Tiago Alexandre Melo
Neural networks
Deep learning
Information Retrieval
Neural Information Retrieval
Statistical Models
title_short Neural information retrieval for biomedical question-answering
title_full Neural information retrieval for biomedical question-answering
title_fullStr Neural information retrieval for biomedical question-answering
title_full_unstemmed Neural information retrieval for biomedical question-answering
title_sort Neural information retrieval for biomedical question-answering
author Almeida, Tiago Alexandre Melo
author_facet Almeida, Tiago Alexandre Melo
author_role author
dc.contributor.author.fl_str_mv Almeida, Tiago Alexandre Melo
dc.subject.por.fl_str_mv Neural networks
Deep learning
Information Retrieval
Neural Information Retrieval
Statistical Models
topic Neural networks
Deep learning
Information Retrieval
Neural Information Retrieval
Statistical Models
description At the rate that publicly available biomedical literature grows, current searching systems start to struggle to maintain an acceptable performance. This situation becomes more severe when a question is submitted in natural language format. Moved by this limitation, this dissertation has the main purpose of creating an automatic question answering system applied to the biomedical domain that returns for a given natural language question, the most relevant documents and their relevant snippets. The system was divided into three steps, the first consist in finding potentially relevant documents to the query. In the second step, a more powerful deep neural model will rank these documents, in a way that the query context and meaning is taken into consideration. Additionally, it was been proposed a novel deep neural model that is used in the final two steps of the system. Finally, the snippets that helped the deep neural model to rank the most relevant documents are also extracted. As a way of validation, the system results were compared with the results from this year’s BioASQ challenge, scoring the best result in first batch and third best on the last batch, while staying near to the top in the remaining batches.
publishDate 2019
dc.date.none.fl_str_mv 2019-08-01T00:00:00Z
2019-08
2020-10-23T09:54:23Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10773/29572
url http://hdl.handle.net/10773/29572
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799137674577051648