Neural information retrieval for biomedical question-answering
Autor(a) principal: | |
---|---|
Data de Publicação: | 2019 |
Tipo de documento: | Dissertação |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10773/29572 |
Resumo: | At the rate that publicly available biomedical literature grows, current searching systems start to struggle to maintain an acceptable performance. This situation becomes more severe when a question is submitted in natural language format. Moved by this limitation, this dissertation has the main purpose of creating an automatic question answering system applied to the biomedical domain that returns for a given natural language question, the most relevant documents and their relevant snippets. The system was divided into three steps, the first consist in finding potentially relevant documents to the query. In the second step, a more powerful deep neural model will rank these documents, in a way that the query context and meaning is taken into consideration. Additionally, it was been proposed a novel deep neural model that is used in the final two steps of the system. Finally, the snippets that helped the deep neural model to rank the most relevant documents are also extracted. As a way of validation, the system results were compared with the results from this year’s BioASQ challenge, scoring the best result in first batch and third best on the last batch, while staying near to the top in the remaining batches. |
id |
RCAP_8b55d1bc5f584eceaa923aec75774d5f |
---|---|
oai_identifier_str |
oai:ria.ua.pt:10773/29572 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Neural information retrieval for biomedical question-answeringNeural networksDeep learningInformation RetrievalNeural Information RetrievalStatistical ModelsAt the rate that publicly available biomedical literature grows, current searching systems start to struggle to maintain an acceptable performance. This situation becomes more severe when a question is submitted in natural language format. Moved by this limitation, this dissertation has the main purpose of creating an automatic question answering system applied to the biomedical domain that returns for a given natural language question, the most relevant documents and their relevant snippets. The system was divided into three steps, the first consist in finding potentially relevant documents to the query. In the second step, a more powerful deep neural model will rank these documents, in a way that the query context and meaning is taken into consideration. Additionally, it was been proposed a novel deep neural model that is used in the final two steps of the system. Finally, the snippets that helped the deep neural model to rank the most relevant documents are also extracted. As a way of validation, the system results were compared with the results from this year’s BioASQ challenge, scoring the best result in first batch and third best on the last batch, while staying near to the top in the remaining batches.Ao ritmo que a literatura biomédica publicamente disponível cresce, os sistemas de pesquisa atuais começam a ter dificuldades em manter um desempenho aceitável. Esta situação torna-se mais severa quando uma questão é submetida em linguagem natural. Movido por esta limitação, esta dissertação tem como principal objetivo criar um sistema automático de reposta a perguntas aplicado ao domínio biomédico que retorne, para uma dada questão, os documento mais relevantes e os seus respetivos excertos. O sistema foi dividido em três tarefas, a primeira consiste em encontrar documentos potencialmente relevantes para cada pergunta. No segundo passo, esses documentos são classificados por um modelo neural, que tem em consideração o significado e contexto da pergunta. Por fim, os excertos dos documentos relevantes mais significativos do ponto do vista do modelo neural são extraidos. Adicionalmente, foi proposto um novo modelo neural que é utilizado nas duas últimas tarefas do sistema. Como forma de validação, os resultados do sistema foram comparados com os resultados do desafio BioASQ deste ano, sendo que foi obtido o melhor resultado para o primeiro conjunto de teste e o terceiro melhor para o último conjunto de teste, enquanto que nos restantes os resultados ficaram próximos do topo.2020-10-23T09:54:23Z2019-08-01T00:00:00Z2019-08info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10773/29572engAlmeida, Tiago Alexandre Meloinfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-02-22T11:57:14Zoai:ria.ua.pt:10773/29572Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T03:01:52.843783Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Neural information retrieval for biomedical question-answering |
title |
Neural information retrieval for biomedical question-answering |
spellingShingle |
Neural information retrieval for biomedical question-answering Almeida, Tiago Alexandre Melo Neural networks Deep learning Information Retrieval Neural Information Retrieval Statistical Models |
title_short |
Neural information retrieval for biomedical question-answering |
title_full |
Neural information retrieval for biomedical question-answering |
title_fullStr |
Neural information retrieval for biomedical question-answering |
title_full_unstemmed |
Neural information retrieval for biomedical question-answering |
title_sort |
Neural information retrieval for biomedical question-answering |
author |
Almeida, Tiago Alexandre Melo |
author_facet |
Almeida, Tiago Alexandre Melo |
author_role |
author |
dc.contributor.author.fl_str_mv |
Almeida, Tiago Alexandre Melo |
dc.subject.por.fl_str_mv |
Neural networks Deep learning Information Retrieval Neural Information Retrieval Statistical Models |
topic |
Neural networks Deep learning Information Retrieval Neural Information Retrieval Statistical Models |
description |
At the rate that publicly available biomedical literature grows, current searching systems start to struggle to maintain an acceptable performance. This situation becomes more severe when a question is submitted in natural language format. Moved by this limitation, this dissertation has the main purpose of creating an automatic question answering system applied to the biomedical domain that returns for a given natural language question, the most relevant documents and their relevant snippets. The system was divided into three steps, the first consist in finding potentially relevant documents to the query. In the second step, a more powerful deep neural model will rank these documents, in a way that the query context and meaning is taken into consideration. Additionally, it was been proposed a novel deep neural model that is used in the final two steps of the system. Finally, the snippets that helped the deep neural model to rank the most relevant documents are also extracted. As a way of validation, the system results were compared with the results from this year’s BioASQ challenge, scoring the best result in first batch and third best on the last batch, while staying near to the top in the remaining batches. |
publishDate |
2019 |
dc.date.none.fl_str_mv |
2019-08-01T00:00:00Z 2019-08 2020-10-23T09:54:23Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10773/29572 |
url |
http://hdl.handle.net/10773/29572 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799137674577051648 |