Evolution of neural networks for classification and regression
Autor(a) principal: | |
---|---|
Data de Publicação: | 2007 |
Outros Autores: | , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/1822/8028 |
Resumo: | Although Artificial Neural Networks (ANNs) are important Data Mining techniques, the search for the optimal ANN is a challenging task: the ANN should learn the input-output mapping without overfitting the data and training algorithms may get trapped in local minima. The use of Evolutionary Computation (EC) is a promising alternative for ANN optimization. This work presents two hybrid EC/ANN algorithms: the first evolves neural topologies while the latter performs simultaneous optimization of architectures and weights. Sixteen real-world tasks were used to test these strategies. Competitive results were achieved when compared with a heuristic model selection and other Data Mining algorithms. |
id |
RCAP_8be70952fdc39152d446e81308885e81 |
---|---|
oai_identifier_str |
oai:repositorium.sdum.uminho.pt:1822/8028 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Evolution of neural networks for classification and regressionSupervised learningMultilayer perceptronsEvolutionary algorithmsLamarckian optimizationNeural network ensemblesScience & TechnologyAlthough Artificial Neural Networks (ANNs) are important Data Mining techniques, the search for the optimal ANN is a challenging task: the ANN should learn the input-output mapping without overfitting the data and training algorithms may get trapped in local minima. The use of Evolutionary Computation (EC) is a promising alternative for ANN optimization. This work presents two hybrid EC/ANN algorithms: the first evolves neural topologies while the latter performs simultaneous optimization of architectures and weights. Sixteen real-world tasks were used to test these strategies. Competitive results were achieved when compared with a heuristic model selection and other Data Mining algorithms.Fundação para a Ciência e a Tecnologia (FCT) - projecto POSI/EIA/59899/2004.ElsevierUniversidade do MinhoRocha, MiguelCortez, PauloNeves, José20072007-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/1822/8028eng"Neurocomputing". ISSN 0925-2312. 70:16-18 (Aug. 2007) 2809-2816.0925-231210.1016/j.neucom.2006.05.023http://www.sciencedirect.com/science/journal/09252312info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-07-21T12:44:46Zoai:repositorium.sdum.uminho.pt:1822/8028Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T19:42:31.792477Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Evolution of neural networks for classification and regression |
title |
Evolution of neural networks for classification and regression |
spellingShingle |
Evolution of neural networks for classification and regression Rocha, Miguel Supervised learning Multilayer perceptrons Evolutionary algorithms Lamarckian optimization Neural network ensembles Science & Technology |
title_short |
Evolution of neural networks for classification and regression |
title_full |
Evolution of neural networks for classification and regression |
title_fullStr |
Evolution of neural networks for classification and regression |
title_full_unstemmed |
Evolution of neural networks for classification and regression |
title_sort |
Evolution of neural networks for classification and regression |
author |
Rocha, Miguel |
author_facet |
Rocha, Miguel Cortez, Paulo Neves, José |
author_role |
author |
author2 |
Cortez, Paulo Neves, José |
author2_role |
author author |
dc.contributor.none.fl_str_mv |
Universidade do Minho |
dc.contributor.author.fl_str_mv |
Rocha, Miguel Cortez, Paulo Neves, José |
dc.subject.por.fl_str_mv |
Supervised learning Multilayer perceptrons Evolutionary algorithms Lamarckian optimization Neural network ensembles Science & Technology |
topic |
Supervised learning Multilayer perceptrons Evolutionary algorithms Lamarckian optimization Neural network ensembles Science & Technology |
description |
Although Artificial Neural Networks (ANNs) are important Data Mining techniques, the search for the optimal ANN is a challenging task: the ANN should learn the input-output mapping without overfitting the data and training algorithms may get trapped in local minima. The use of Evolutionary Computation (EC) is a promising alternative for ANN optimization. This work presents two hybrid EC/ANN algorithms: the first evolves neural topologies while the latter performs simultaneous optimization of architectures and weights. Sixteen real-world tasks were used to test these strategies. Competitive results were achieved when compared with a heuristic model selection and other Data Mining algorithms. |
publishDate |
2007 |
dc.date.none.fl_str_mv |
2007 2007-01-01T00:00:00Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/1822/8028 |
url |
http://hdl.handle.net/1822/8028 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
"Neurocomputing". ISSN 0925-2312. 70:16-18 (Aug. 2007) 2809-2816. 0925-2312 10.1016/j.neucom.2006.05.023 http://www.sciencedirect.com/science/journal/09252312 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier |
publisher.none.fl_str_mv |
Elsevier |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799132978707693568 |