Evolution of neural networks for classification and regression

Detalhes bibliográficos
Autor(a) principal: Rocha, Miguel
Data de Publicação: 2007
Outros Autores: Cortez, Paulo, Neves, José
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/1822/8028
Resumo: Although Artificial Neural Networks (ANNs) are important Data Mining techniques, the search for the optimal ANN is a challenging task: the ANN should learn the input-output mapping without overfitting the data and training algorithms may get trapped in local minima. The use of Evolutionary Computation (EC) is a promising alternative for ANN optimization. This work presents two hybrid EC/ANN algorithms: the first evolves neural topologies while the latter performs simultaneous optimization of architectures and weights. Sixteen real-world tasks were used to test these strategies. Competitive results were achieved when compared with a heuristic model selection and other Data Mining algorithms.
id RCAP_8be70952fdc39152d446e81308885e81
oai_identifier_str oai:repositorium.sdum.uminho.pt:1822/8028
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Evolution of neural networks for classification and regressionSupervised learningMultilayer perceptronsEvolutionary algorithmsLamarckian optimizationNeural network ensemblesScience & TechnologyAlthough Artificial Neural Networks (ANNs) are important Data Mining techniques, the search for the optimal ANN is a challenging task: the ANN should learn the input-output mapping without overfitting the data and training algorithms may get trapped in local minima. The use of Evolutionary Computation (EC) is a promising alternative for ANN optimization. This work presents two hybrid EC/ANN algorithms: the first evolves neural topologies while the latter performs simultaneous optimization of architectures and weights. Sixteen real-world tasks were used to test these strategies. Competitive results were achieved when compared with a heuristic model selection and other Data Mining algorithms.Fundação para a Ciência e a Tecnologia (FCT) - projecto POSI/EIA/59899/2004.ElsevierUniversidade do MinhoRocha, MiguelCortez, PauloNeves, José20072007-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/1822/8028eng"Neurocomputing". ISSN 0925-2312. 70:16-18 (Aug. 2007) 2809-2816.0925-231210.1016/j.neucom.2006.05.023http://www.sciencedirect.com/science/journal/09252312info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-07-21T12:44:46Zoai:repositorium.sdum.uminho.pt:1822/8028Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T19:42:31.792477Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Evolution of neural networks for classification and regression
title Evolution of neural networks for classification and regression
spellingShingle Evolution of neural networks for classification and regression
Rocha, Miguel
Supervised learning
Multilayer perceptrons
Evolutionary algorithms
Lamarckian optimization
Neural network ensembles
Science & Technology
title_short Evolution of neural networks for classification and regression
title_full Evolution of neural networks for classification and regression
title_fullStr Evolution of neural networks for classification and regression
title_full_unstemmed Evolution of neural networks for classification and regression
title_sort Evolution of neural networks for classification and regression
author Rocha, Miguel
author_facet Rocha, Miguel
Cortez, Paulo
Neves, José
author_role author
author2 Cortez, Paulo
Neves, José
author2_role author
author
dc.contributor.none.fl_str_mv Universidade do Minho
dc.contributor.author.fl_str_mv Rocha, Miguel
Cortez, Paulo
Neves, José
dc.subject.por.fl_str_mv Supervised learning
Multilayer perceptrons
Evolutionary algorithms
Lamarckian optimization
Neural network ensembles
Science & Technology
topic Supervised learning
Multilayer perceptrons
Evolutionary algorithms
Lamarckian optimization
Neural network ensembles
Science & Technology
description Although Artificial Neural Networks (ANNs) are important Data Mining techniques, the search for the optimal ANN is a challenging task: the ANN should learn the input-output mapping without overfitting the data and training algorithms may get trapped in local minima. The use of Evolutionary Computation (EC) is a promising alternative for ANN optimization. This work presents two hybrid EC/ANN algorithms: the first evolves neural topologies while the latter performs simultaneous optimization of architectures and weights. Sixteen real-world tasks were used to test these strategies. Competitive results were achieved when compared with a heuristic model selection and other Data Mining algorithms.
publishDate 2007
dc.date.none.fl_str_mv 2007
2007-01-01T00:00:00Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/1822/8028
url http://hdl.handle.net/1822/8028
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv "Neurocomputing". ISSN 0925-2312. 70:16-18 (Aug. 2007) 2809-2816.
0925-2312
10.1016/j.neucom.2006.05.023
http://www.sciencedirect.com/science/journal/09252312
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Elsevier
publisher.none.fl_str_mv Elsevier
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799132978707693568