Natural ventilation of greenhouses. Comparison of measured and predicted ventilation rates.

Detalhes bibliográficos
Autor(a) principal: Baptista, F.J.
Data de Publicação: 2001
Outros Autores: Bailey, B.J., Meneses, J.F.
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10174/3420
Resumo: Ventilation is one of the most important tools for controlling the greenhouse climate. The air exchange between inside and outside of a greenhouse influences the environmental conditions such as temperature, humidity and carbon dioxide concentration of the enclosure which affect the development and production of the crop. In winter, ventilation must remove the excess water vapour while during summer cooling is the main reason for ventilation. Natural ventilation is the result of the action of two natural forces, wind and thermal buoyancy. Some models of natural ventilation are described. Various techniques have been used to determine ventilation and leakage rates such as tracer gas and energy balances. The energy balance is based on the energy removed by ventilation from the greenhouse as a way of preventing excessively high temperatures. Tracer gas techniques are based on mass balances and are used mostly to measure ventilation rates directly in greenhouses. It seems that the tracer gas technique gives greater accuracy than the energy balance at low ventilation rates. The difficulty of using the energy balance is the large number of variables involved and the required accuracy in their measurement. In this study, ventilation rate was measured using the decay tracer gas method for leeward ventilators opened to 10 and 20%. It was found that wind speed had a strong influence on ventilation rates and a linear relation was obtained. Ventilation rates were predicted using the energy balance method and a model based on wind and buoyancy forces proposed by Boulard and Baille (1995), assuming that total ventilation is due to the combined effect of both natural forces. It was found that the energy balance gives better results for higher ventilator apertures. In the case of the model based on wind and buoyancy forces good agreement was obtained between measured and predicted ventilation rates for both ventilator positions.
id RCAP_8c79bd0169568e2390ed43dbabe518d0
oai_identifier_str oai:dspace.uevora.pt:10174/3420
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Natural ventilation of greenhouses. Comparison of measured and predicted ventilation rates.natural ventilationenergy balancetracer gasgreenhouseVentilation is one of the most important tools for controlling the greenhouse climate. The air exchange between inside and outside of a greenhouse influences the environmental conditions such as temperature, humidity and carbon dioxide concentration of the enclosure which affect the development and production of the crop. In winter, ventilation must remove the excess water vapour while during summer cooling is the main reason for ventilation. Natural ventilation is the result of the action of two natural forces, wind and thermal buoyancy. Some models of natural ventilation are described. Various techniques have been used to determine ventilation and leakage rates such as tracer gas and energy balances. The energy balance is based on the energy removed by ventilation from the greenhouse as a way of preventing excessively high temperatures. Tracer gas techniques are based on mass balances and are used mostly to measure ventilation rates directly in greenhouses. It seems that the tracer gas technique gives greater accuracy than the energy balance at low ventilation rates. The difficulty of using the energy balance is the large number of variables involved and the required accuracy in their measurement. In this study, ventilation rate was measured using the decay tracer gas method for leeward ventilators opened to 10 and 20%. It was found that wind speed had a strong influence on ventilation rates and a linear relation was obtained. Ventilation rates were predicted using the energy balance method and a model based on wind and buoyancy forces proposed by Boulard and Baille (1995), assuming that total ventilation is due to the combined effect of both natural forces. It was found that the energy balance gives better results for higher ventilator apertures. In the case of the model based on wind and buoyancy forces good agreement was obtained between measured and predicted ventilation rates for both ventilator positions.2012-01-12T11:21:42Z2012-01-122001-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlehttp://hdl.handle.net/10174/3420http://hdl.handle.net/10174/3420engBAPTISTA FJ, BAILEY BJ e MENESES JF. 2001. Natural ventilation of greenhouses. Comparison of measured and predicted ventilation rates. Paper nº 3019, Proc. of the Simposium Agribuilding 2001, Campinas, Brasil, 136-151.Partilhar com ICAAMfb@uevora.ptndjmeneses@isa.utl.pt580Baptista, F.J.Bailey, B.J.Meneses, J.F.info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-01-03T18:40:30Zoai:dspace.uevora.pt:10174/3420Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T00:58:50.206881Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Natural ventilation of greenhouses. Comparison of measured and predicted ventilation rates.
title Natural ventilation of greenhouses. Comparison of measured and predicted ventilation rates.
spellingShingle Natural ventilation of greenhouses. Comparison of measured and predicted ventilation rates.
Baptista, F.J.
natural ventilation
energy balance
tracer gas
greenhouse
title_short Natural ventilation of greenhouses. Comparison of measured and predicted ventilation rates.
title_full Natural ventilation of greenhouses. Comparison of measured and predicted ventilation rates.
title_fullStr Natural ventilation of greenhouses. Comparison of measured and predicted ventilation rates.
title_full_unstemmed Natural ventilation of greenhouses. Comparison of measured and predicted ventilation rates.
title_sort Natural ventilation of greenhouses. Comparison of measured and predicted ventilation rates.
author Baptista, F.J.
author_facet Baptista, F.J.
Bailey, B.J.
Meneses, J.F.
author_role author
author2 Bailey, B.J.
Meneses, J.F.
author2_role author
author
dc.contributor.author.fl_str_mv Baptista, F.J.
Bailey, B.J.
Meneses, J.F.
dc.subject.por.fl_str_mv natural ventilation
energy balance
tracer gas
greenhouse
topic natural ventilation
energy balance
tracer gas
greenhouse
description Ventilation is one of the most important tools for controlling the greenhouse climate. The air exchange between inside and outside of a greenhouse influences the environmental conditions such as temperature, humidity and carbon dioxide concentration of the enclosure which affect the development and production of the crop. In winter, ventilation must remove the excess water vapour while during summer cooling is the main reason for ventilation. Natural ventilation is the result of the action of two natural forces, wind and thermal buoyancy. Some models of natural ventilation are described. Various techniques have been used to determine ventilation and leakage rates such as tracer gas and energy balances. The energy balance is based on the energy removed by ventilation from the greenhouse as a way of preventing excessively high temperatures. Tracer gas techniques are based on mass balances and are used mostly to measure ventilation rates directly in greenhouses. It seems that the tracer gas technique gives greater accuracy than the energy balance at low ventilation rates. The difficulty of using the energy balance is the large number of variables involved and the required accuracy in their measurement. In this study, ventilation rate was measured using the decay tracer gas method for leeward ventilators opened to 10 and 20%. It was found that wind speed had a strong influence on ventilation rates and a linear relation was obtained. Ventilation rates were predicted using the energy balance method and a model based on wind and buoyancy forces proposed by Boulard and Baille (1995), assuming that total ventilation is due to the combined effect of both natural forces. It was found that the energy balance gives better results for higher ventilator apertures. In the case of the model based on wind and buoyancy forces good agreement was obtained between measured and predicted ventilation rates for both ventilator positions.
publishDate 2001
dc.date.none.fl_str_mv 2001-01-01T00:00:00Z
2012-01-12T11:21:42Z
2012-01-12
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10174/3420
http://hdl.handle.net/10174/3420
url http://hdl.handle.net/10174/3420
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv BAPTISTA FJ, BAILEY BJ e MENESES JF. 2001. Natural ventilation of greenhouses. Comparison of measured and predicted ventilation rates. Paper nº 3019, Proc. of the Simposium Agribuilding 2001, Campinas, Brasil, 136-151.
Partilhar com ICAAM
fb@uevora.pt
nd
jmeneses@isa.utl.pt
580
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799136471575166976