Synthesis, Microstructural, and Mechano-Tribological Properties of Self-Lubricating W-S-C(H) Thin Films Deposited by Different RF Magnetron Sputtering Procedures

Detalhes bibliográficos
Autor(a) principal: Vuchkov, Todor
Data de Publicação: 2020
Outros Autores: Yaqub, Talha Bin, Evaristo, Manuel, Cavaleiro, Albano
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
DOI: 10.3390/coatings10030272
Texto Completo: http://hdl.handle.net/10316/101284
https://doi.org/10.3390/coatings10030272
Resumo: Carbon-alloyed transition metal dichalcogenide (TMD) coatings have great potential for providing a good tribological response in diverse operating environments. There are di erent ways to synthesize these coatings by magnetron sputtering, with no clear indication of the best possible route for potential upscaling. In this study, tungsten-sulfur-carbon (W-S-C) coatings were deposited by radio frequency (RF) magnetron sputtering via four di erent methods. All coatings were sub-stoichiometric in terms of the S/Wratio, with the bombardment of the growing film with backscattered Ar neutrals being the main mechanism governing the S/Wratio. The crystallinity of the films was dependent on the C and S contents. X-ray photoelectron spectroscopy (XPS) revealed W-S and W-C bonding in all coatings. Raman spectroscopy showed the presence of an a-C phase with predominant sp2 bonding. The hardness of the coatings may be related to the C content and the S/W ratio. A friction coe cient of 0.06–0.08 was achieved during sliding in ambient air by the coatings deposited in non-reactive mode with optimal C contents. The results indicate that sputtering in non-reactive mode should be the method of choice for synthesis of these coatings.
id RCAP_8c7d375c16fcf90ce3c3a420db5a18d6
oai_identifier_str oai:estudogeral.uc.pt:10316/101284
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Synthesis, Microstructural, and Mechano-Tribological Properties of Self-Lubricating W-S-C(H) Thin Films Deposited by Different RF Magnetron Sputtering Proceduresmagnetron sputteringtransition metal dichalcogenidestribologyCarbon-alloyed transition metal dichalcogenide (TMD) coatings have great potential for providing a good tribological response in diverse operating environments. There are di erent ways to synthesize these coatings by magnetron sputtering, with no clear indication of the best possible route for potential upscaling. In this study, tungsten-sulfur-carbon (W-S-C) coatings were deposited by radio frequency (RF) magnetron sputtering via four di erent methods. All coatings were sub-stoichiometric in terms of the S/Wratio, with the bombardment of the growing film with backscattered Ar neutrals being the main mechanism governing the S/Wratio. The crystallinity of the films was dependent on the C and S contents. X-ray photoelectron spectroscopy (XPS) revealed W-S and W-C bonding in all coatings. Raman spectroscopy showed the presence of an a-C phase with predominant sp2 bonding. The hardness of the coatings may be related to the C content and the S/W ratio. A friction coe cient of 0.06–0.08 was achieved during sliding in ambient air by the coatings deposited in non-reactive mode with optimal C contents. The results indicate that sputtering in non-reactive mode should be the method of choice for synthesis of these coatings.2020info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlehttp://hdl.handle.net/10316/101284http://hdl.handle.net/10316/101284https://doi.org/10.3390/coatings10030272eng2079-6412Vuchkov, TodorYaqub, Talha BinEvaristo, ManuelCavaleiro, Albanoinfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2022-08-19T20:39:39Zoai:estudogeral.uc.pt:10316/101284Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T21:18:30.724693Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Synthesis, Microstructural, and Mechano-Tribological Properties of Self-Lubricating W-S-C(H) Thin Films Deposited by Different RF Magnetron Sputtering Procedures
title Synthesis, Microstructural, and Mechano-Tribological Properties of Self-Lubricating W-S-C(H) Thin Films Deposited by Different RF Magnetron Sputtering Procedures
spellingShingle Synthesis, Microstructural, and Mechano-Tribological Properties of Self-Lubricating W-S-C(H) Thin Films Deposited by Different RF Magnetron Sputtering Procedures
Synthesis, Microstructural, and Mechano-Tribological Properties of Self-Lubricating W-S-C(H) Thin Films Deposited by Different RF Magnetron Sputtering Procedures
Vuchkov, Todor
magnetron sputtering
transition metal dichalcogenides
tribology
Vuchkov, Todor
magnetron sputtering
transition metal dichalcogenides
tribology
title_short Synthesis, Microstructural, and Mechano-Tribological Properties of Self-Lubricating W-S-C(H) Thin Films Deposited by Different RF Magnetron Sputtering Procedures
title_full Synthesis, Microstructural, and Mechano-Tribological Properties of Self-Lubricating W-S-C(H) Thin Films Deposited by Different RF Magnetron Sputtering Procedures
title_fullStr Synthesis, Microstructural, and Mechano-Tribological Properties of Self-Lubricating W-S-C(H) Thin Films Deposited by Different RF Magnetron Sputtering Procedures
Synthesis, Microstructural, and Mechano-Tribological Properties of Self-Lubricating W-S-C(H) Thin Films Deposited by Different RF Magnetron Sputtering Procedures
title_full_unstemmed Synthesis, Microstructural, and Mechano-Tribological Properties of Self-Lubricating W-S-C(H) Thin Films Deposited by Different RF Magnetron Sputtering Procedures
Synthesis, Microstructural, and Mechano-Tribological Properties of Self-Lubricating W-S-C(H) Thin Films Deposited by Different RF Magnetron Sputtering Procedures
title_sort Synthesis, Microstructural, and Mechano-Tribological Properties of Self-Lubricating W-S-C(H) Thin Films Deposited by Different RF Magnetron Sputtering Procedures
author Vuchkov, Todor
author_facet Vuchkov, Todor
Vuchkov, Todor
Yaqub, Talha Bin
Evaristo, Manuel
Cavaleiro, Albano
Yaqub, Talha Bin
Evaristo, Manuel
Cavaleiro, Albano
author_role author
author2 Yaqub, Talha Bin
Evaristo, Manuel
Cavaleiro, Albano
author2_role author
author
author
dc.contributor.author.fl_str_mv Vuchkov, Todor
Yaqub, Talha Bin
Evaristo, Manuel
Cavaleiro, Albano
dc.subject.por.fl_str_mv magnetron sputtering
transition metal dichalcogenides
tribology
topic magnetron sputtering
transition metal dichalcogenides
tribology
description Carbon-alloyed transition metal dichalcogenide (TMD) coatings have great potential for providing a good tribological response in diverse operating environments. There are di erent ways to synthesize these coatings by magnetron sputtering, with no clear indication of the best possible route for potential upscaling. In this study, tungsten-sulfur-carbon (W-S-C) coatings were deposited by radio frequency (RF) magnetron sputtering via four di erent methods. All coatings were sub-stoichiometric in terms of the S/Wratio, with the bombardment of the growing film with backscattered Ar neutrals being the main mechanism governing the S/Wratio. The crystallinity of the films was dependent on the C and S contents. X-ray photoelectron spectroscopy (XPS) revealed W-S and W-C bonding in all coatings. Raman spectroscopy showed the presence of an a-C phase with predominant sp2 bonding. The hardness of the coatings may be related to the C content and the S/W ratio. A friction coe cient of 0.06–0.08 was achieved during sliding in ambient air by the coatings deposited in non-reactive mode with optimal C contents. The results indicate that sputtering in non-reactive mode should be the method of choice for synthesis of these coatings.
publishDate 2020
dc.date.none.fl_str_mv 2020
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10316/101284
http://hdl.handle.net/10316/101284
https://doi.org/10.3390/coatings10030272
url http://hdl.handle.net/10316/101284
https://doi.org/10.3390/coatings10030272
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 2079-6412
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1822226266296680448
dc.identifier.doi.none.fl_str_mv 10.3390/coatings10030272