On circulant and skew-circulant splitting algorithms for (continuous) Sylvester equations
Autor(a) principal: | |
---|---|
Data de Publicação: | 2022 |
Outros Autores: | , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | https://hdl.handle.net/1822/76429 |
Resumo: | We present a circulant and skew-circulant splitting (CSCS) iterative method for solving large sparse continuous Sylvester equations AX+XB=C, where the coefficient matrices A and B are Toeplitz matrices. A theoretical study shows that if the circulant and skew-circulant splitting factors of A and B are positive semi-definite (not necessarily Hermitian), and at least one factor is positive definite, then the CSCS method converges to the unique solution of the Sylvester equation. In addition, our analysis gives an upper bound for the convergence factor of the CSCS iteration which depends only on the eigenvalues of the circulant and skew-circulant splitting matrices. A computational comparison with alternative methods reveals the efficiency and reliability of the proposed method. |
id |
RCAP_8cb9069004bf86fcade8529138fba34a |
---|---|
oai_identifier_str |
oai:repositorium.sdum.uminho.pt:1822/76429 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
On circulant and skew-circulant splitting algorithms for (continuous) Sylvester equationsContinuous Sylvester equationsCSCS iterationToeplitz matricesConvergenceCiências Naturais::MatemáticasScience & TechnologyWe present a circulant and skew-circulant splitting (CSCS) iterative method for solving large sparse continuous Sylvester equations AX+XB=C, where the coefficient matrices A and B are Toeplitz matrices. A theoretical study shows that if the circulant and skew-circulant splitting factors of A and B are positive semi-definite (not necessarily Hermitian), and at least one factor is positive definite, then the CSCS method converges to the unique solution of the Sylvester equation. In addition, our analysis gives an upper bound for the convergence factor of the CSCS iteration which depends only on the eigenvalues of the circulant and skew-circulant splitting matrices. A computational comparison with alternative methods reveals the efficiency and reliability of the proposed method.NSFC -National Natural Science Foundation of China(11371075)ElsevierUniversidade do MinhoLiu, ZhongyunZhang, FangFerreira, CarlaZhang, Yulin20222025-01-01T00:00:00Z2022-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttps://hdl.handle.net/1822/76429eng0898-122110.1016/j.camwa.2022.01.027https://www.sciencedirect.com/science/article/pii/S0898122122000347info:eu-repo/semantics/embargoedAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-07-21T12:13:17Zoai:repositorium.sdum.uminho.pt:1822/76429Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T19:05:20.497847Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
On circulant and skew-circulant splitting algorithms for (continuous) Sylvester equations |
title |
On circulant and skew-circulant splitting algorithms for (continuous) Sylvester equations |
spellingShingle |
On circulant and skew-circulant splitting algorithms for (continuous) Sylvester equations Liu, Zhongyun Continuous Sylvester equations CSCS iteration Toeplitz matrices Convergence Ciências Naturais::Matemáticas Science & Technology |
title_short |
On circulant and skew-circulant splitting algorithms for (continuous) Sylvester equations |
title_full |
On circulant and skew-circulant splitting algorithms for (continuous) Sylvester equations |
title_fullStr |
On circulant and skew-circulant splitting algorithms for (continuous) Sylvester equations |
title_full_unstemmed |
On circulant and skew-circulant splitting algorithms for (continuous) Sylvester equations |
title_sort |
On circulant and skew-circulant splitting algorithms for (continuous) Sylvester equations |
author |
Liu, Zhongyun |
author_facet |
Liu, Zhongyun Zhang, Fang Ferreira, Carla Zhang, Yulin |
author_role |
author |
author2 |
Zhang, Fang Ferreira, Carla Zhang, Yulin |
author2_role |
author author author |
dc.contributor.none.fl_str_mv |
Universidade do Minho |
dc.contributor.author.fl_str_mv |
Liu, Zhongyun Zhang, Fang Ferreira, Carla Zhang, Yulin |
dc.subject.por.fl_str_mv |
Continuous Sylvester equations CSCS iteration Toeplitz matrices Convergence Ciências Naturais::Matemáticas Science & Technology |
topic |
Continuous Sylvester equations CSCS iteration Toeplitz matrices Convergence Ciências Naturais::Matemáticas Science & Technology |
description |
We present a circulant and skew-circulant splitting (CSCS) iterative method for solving large sparse continuous Sylvester equations AX+XB=C, where the coefficient matrices A and B are Toeplitz matrices. A theoretical study shows that if the circulant and skew-circulant splitting factors of A and B are positive semi-definite (not necessarily Hermitian), and at least one factor is positive definite, then the CSCS method converges to the unique solution of the Sylvester equation. In addition, our analysis gives an upper bound for the convergence factor of the CSCS iteration which depends only on the eigenvalues of the circulant and skew-circulant splitting matrices. A computational comparison with alternative methods reveals the efficiency and reliability of the proposed method. |
publishDate |
2022 |
dc.date.none.fl_str_mv |
2022 2022-01-01T00:00:00Z 2025-01-01T00:00:00Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://hdl.handle.net/1822/76429 |
url |
https://hdl.handle.net/1822/76429 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
0898-1221 10.1016/j.camwa.2022.01.027 https://www.sciencedirect.com/science/article/pii/S0898122122000347 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/embargoedAccess |
eu_rights_str_mv |
embargoedAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier |
publisher.none.fl_str_mv |
Elsevier |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799132465264066560 |