Optimal Control of a SEIR Model with Mixed Constraints and L-1 Cost
Autor(a) principal: | |
---|---|
Data de Publicação: | 2015 |
Outros Autores: | , |
Tipo de documento: | Livro |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | https://hdl.handle.net/10216/109701 |
Resumo: | Optimal control can help to determine vaccination policies for infectious diseases. For diseases transmitted horizontally, SEIR compartment models have been used. Most of the literature on SEIR models deals with cost functions that are quadratic with respect to the control variable, the rate of vaccination. Here, we propose the introduction of a cost of L-1 type which is linear with respect to the control variable. Our starting point is the recent work [1], where the number of vaccines at each time is assumed to be limited. This yields an optimal control problem with a mixed control-state constraint. We discuss the necessary optimality conditions of the Maximum Principle and present numerical solutions that precisely satisfy the necessary conditions. |
id |
RCAP_8d023725b6a70a068933807e1f56d9bb |
---|---|
oai_identifier_str |
oai:repositorio-aberto.up.pt:10216/109701 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Optimal Control of a SEIR Model with Mixed Constraints and L-1 CostEngenharia electrotécnica, electrónica e informáticaElectrical engineering, Electronic engineering, Information engineeringOptimal control can help to determine vaccination policies for infectious diseases. For diseases transmitted horizontally, SEIR compartment models have been used. Most of the literature on SEIR models deals with cost functions that are quadratic with respect to the control variable, the rate of vaccination. Here, we propose the introduction of a cost of L-1 type which is linear with respect to the control variable. Our starting point is the recent work [1], where the number of vaccines at each time is assumed to be limited. This yields an optimal control problem with a mixed control-state constraint. We discuss the necessary optimality conditions of the Maximum Principle and present numerical solutions that precisely satisfy the necessary conditions.20152015-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/bookapplication/pdfhttps://hdl.handle.net/10216/109701eng10.1007/978-3-319-10380-8_14de pinho, mdkornienko, imaurer, hinfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-11-29T12:53:42Zoai:repositorio-aberto.up.pt:10216/109701Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T23:28:51.976911Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Optimal Control of a SEIR Model with Mixed Constraints and L-1 Cost |
title |
Optimal Control of a SEIR Model with Mixed Constraints and L-1 Cost |
spellingShingle |
Optimal Control of a SEIR Model with Mixed Constraints and L-1 Cost de pinho, md Engenharia electrotécnica, electrónica e informática Electrical engineering, Electronic engineering, Information engineering |
title_short |
Optimal Control of a SEIR Model with Mixed Constraints and L-1 Cost |
title_full |
Optimal Control of a SEIR Model with Mixed Constraints and L-1 Cost |
title_fullStr |
Optimal Control of a SEIR Model with Mixed Constraints and L-1 Cost |
title_full_unstemmed |
Optimal Control of a SEIR Model with Mixed Constraints and L-1 Cost |
title_sort |
Optimal Control of a SEIR Model with Mixed Constraints and L-1 Cost |
author |
de pinho, md |
author_facet |
de pinho, md kornienko, i maurer, h |
author_role |
author |
author2 |
kornienko, i maurer, h |
author2_role |
author author |
dc.contributor.author.fl_str_mv |
de pinho, md kornienko, i maurer, h |
dc.subject.por.fl_str_mv |
Engenharia electrotécnica, electrónica e informática Electrical engineering, Electronic engineering, Information engineering |
topic |
Engenharia electrotécnica, electrónica e informática Electrical engineering, Electronic engineering, Information engineering |
description |
Optimal control can help to determine vaccination policies for infectious diseases. For diseases transmitted horizontally, SEIR compartment models have been used. Most of the literature on SEIR models deals with cost functions that are quadratic with respect to the control variable, the rate of vaccination. Here, we propose the introduction of a cost of L-1 type which is linear with respect to the control variable. Our starting point is the recent work [1], where the number of vaccines at each time is assumed to be limited. This yields an optimal control problem with a mixed control-state constraint. We discuss the necessary optimality conditions of the Maximum Principle and present numerical solutions that precisely satisfy the necessary conditions. |
publishDate |
2015 |
dc.date.none.fl_str_mv |
2015 2015-01-01T00:00:00Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/book |
format |
book |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://hdl.handle.net/10216/109701 |
url |
https://hdl.handle.net/10216/109701 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
10.1007/978-3-319-10380-8_14 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799135596152619008 |