DeepBrain: Experimental Evaluation of Cloud-Based Computation Offloading and Edge Computing in the Internet-of-Drones for Deep Learning Applications

Detalhes bibliográficos
Autor(a) principal: Koubaa, Anis
Data de Publicação: 2020
Outros Autores: Ammar, Adel, Alahda, Mahmoud, Kanhouc, Anas, Azar, Ahmad Taher
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10400.22/16372
Resumo: This article belongs to the Special Issue Time-Sensitive Networks for Unmanned Aircraft Systems
id RCAP_8d6dddd07f53df098981c865d1ccc0aa
oai_identifier_str oai:recipp.ipp.pt:10400.22/16372
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling DeepBrain: Experimental Evaluation of Cloud-Based Computation Offloading and Edge Computing in the Internet-of-Drones for Deep Learning ApplicationsUnmanned aerial vehicles (UAVs)Deep learningCloud computingInternet-of-ThingsRemote sensingSmart citiesThis article belongs to the Special Issue Time-Sensitive Networks for Unmanned Aircraft SystemsUnmanned Aerial Vehicles (UAVs) have been very effective in collecting aerial images data for various Internet-of-Things (IoT)/smart cities applications such as search and rescue, surveillance, vehicle detection, counting, intelligent transportation systems, to name a few. However, the real-time processing of collected data on edge in the context of the Internet-of-Drones remains an open challenge because UAVs have limited energy capabilities, while computer vision techniquesconsume excessive energy and require abundant resources. This fact is even more critical when deep learning algorithms, such as convolutional neural networks (CNNs), are used for classification and detection. In this paper, we first propose a system architecture of computation offloading for Internet-connected drones. Then, we conduct a comprehensive experimental study to evaluate the performance in terms of energy, bandwidth, and delay of the cloud computation offloading approach versus the edge computing approach of deep learning applications in the context of UAVs. In particular, we investigate the tradeoff between the communication cost and the computation of the two candidate approaches experimentally. The main results demonstrate that the computation offloading approach allows us to provide much higher throughput (i.e., frames per second) as compared to the edge computing approach, despite the larger communication delays.MDPIRepositório Científico do Instituto Politécnico do PortoKoubaa, AnisAmmar, AdelAlahda, MahmoudKanhouc, AnasAzar, Ahmad Taher2020-10-30T09:24:46Z20202020-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10400.22/16372eng1424-822010.3390/s20185240info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-03-13T13:03:29Zoai:recipp.ipp.pt:10400.22/16372Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T17:36:04.266796Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv DeepBrain: Experimental Evaluation of Cloud-Based Computation Offloading and Edge Computing in the Internet-of-Drones for Deep Learning Applications
title DeepBrain: Experimental Evaluation of Cloud-Based Computation Offloading and Edge Computing in the Internet-of-Drones for Deep Learning Applications
spellingShingle DeepBrain: Experimental Evaluation of Cloud-Based Computation Offloading and Edge Computing in the Internet-of-Drones for Deep Learning Applications
Koubaa, Anis
Unmanned aerial vehicles (UAVs)
Deep learning
Cloud computing
Internet-of-Things
Remote sensing
Smart cities
title_short DeepBrain: Experimental Evaluation of Cloud-Based Computation Offloading and Edge Computing in the Internet-of-Drones for Deep Learning Applications
title_full DeepBrain: Experimental Evaluation of Cloud-Based Computation Offloading and Edge Computing in the Internet-of-Drones for Deep Learning Applications
title_fullStr DeepBrain: Experimental Evaluation of Cloud-Based Computation Offloading and Edge Computing in the Internet-of-Drones for Deep Learning Applications
title_full_unstemmed DeepBrain: Experimental Evaluation of Cloud-Based Computation Offloading and Edge Computing in the Internet-of-Drones for Deep Learning Applications
title_sort DeepBrain: Experimental Evaluation of Cloud-Based Computation Offloading and Edge Computing in the Internet-of-Drones for Deep Learning Applications
author Koubaa, Anis
author_facet Koubaa, Anis
Ammar, Adel
Alahda, Mahmoud
Kanhouc, Anas
Azar, Ahmad Taher
author_role author
author2 Ammar, Adel
Alahda, Mahmoud
Kanhouc, Anas
Azar, Ahmad Taher
author2_role author
author
author
author
dc.contributor.none.fl_str_mv Repositório Científico do Instituto Politécnico do Porto
dc.contributor.author.fl_str_mv Koubaa, Anis
Ammar, Adel
Alahda, Mahmoud
Kanhouc, Anas
Azar, Ahmad Taher
dc.subject.por.fl_str_mv Unmanned aerial vehicles (UAVs)
Deep learning
Cloud computing
Internet-of-Things
Remote sensing
Smart cities
topic Unmanned aerial vehicles (UAVs)
Deep learning
Cloud computing
Internet-of-Things
Remote sensing
Smart cities
description This article belongs to the Special Issue Time-Sensitive Networks for Unmanned Aircraft Systems
publishDate 2020
dc.date.none.fl_str_mv 2020-10-30T09:24:46Z
2020
2020-01-01T00:00:00Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10400.22/16372
url http://hdl.handle.net/10400.22/16372
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 1424-8220
10.3390/s20185240
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv MDPI
publisher.none.fl_str_mv MDPI
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799131451870937088