Conceptual design and development of an automated co-generation system

Detalhes bibliográficos
Autor(a) principal: Seabra, Eurico
Data de Publicação: 2012
Outros Autores: Machado, José Mendes, Lima, Mário
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/1822/22905
Resumo: Co-generation or Combined Heat and Power (CHP) is the simultaneous generation of both electricity and heat from the same fuel for useful purposes. The fuel varies greatly and can include coal, biomass, natural gas, nuclear material, the sun or heat stored in the earth. Co-generation (as a vector of energy efficiency) and renewable sources of energy possess their own set of low carbon benefits. Coupling co-generation and renewable sources contribute to a very strong proposition since it leads to the supply of both low-carbon electricity and low-carbon heat. In the case of co-generation plants fuelled by renewable energy sources, the low-carbon benefits of the heat are obvious since they derive from the renewable nature of the fuel. However, this also apply in the case of plants feed by other types of fuel. Such plants produce excess heat alongside electricity. When this heat, which is an unavoidable by-product, is used to satisfy an existing heat demand carbon dioxide (CO2) emissions are reduced overall, through a more efficient use of the fuel. The distributed generation systems produce energy close to the point of use, which typically doubles the efficiency in terms of fuel input‐to‐energy output ratio compared to conventional power generation in central plants. This means that the same amount of energy can be produced with half the amount of fuel, making distributed generation an effective approach to reducing greenhouse gas emissions. According to official government reports, the creation of distributed generation systems will account for at least 5% of gas reduction. In this paper the conceptual design and development of an automated co-generation system to apply in collective residences is presented. After concluding the definition of the demanded specifications and requirements for the co-generation system it is presented and discussed the developed solution with the identification of the main components, including the selection and prototype implementation of the necessary sensors and actuators that integrate the system. It is also shown a systematized approach that consists in using the GEMMA and the SFC formalisms for the structure and specification of all the system behaviour, considering all the stop states and functioning modes of the co-generation system.
id RCAP_8df8b3f11d29717b01ac718acea5f612
oai_identifier_str oai:repositorium.sdum.uminho.pt:1822/22905
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Conceptual design and development of an automated co-generation systemCo-generationMechatronic designControllers designGEMMASFCCo-generation or Combined Heat and Power (CHP) is the simultaneous generation of both electricity and heat from the same fuel for useful purposes. The fuel varies greatly and can include coal, biomass, natural gas, nuclear material, the sun or heat stored in the earth. Co-generation (as a vector of energy efficiency) and renewable sources of energy possess their own set of low carbon benefits. Coupling co-generation and renewable sources contribute to a very strong proposition since it leads to the supply of both low-carbon electricity and low-carbon heat. In the case of co-generation plants fuelled by renewable energy sources, the low-carbon benefits of the heat are obvious since they derive from the renewable nature of the fuel. However, this also apply in the case of plants feed by other types of fuel. Such plants produce excess heat alongside electricity. When this heat, which is an unavoidable by-product, is used to satisfy an existing heat demand carbon dioxide (CO2) emissions are reduced overall, through a more efficient use of the fuel. The distributed generation systems produce energy close to the point of use, which typically doubles the efficiency in terms of fuel input‐to‐energy output ratio compared to conventional power generation in central plants. This means that the same amount of energy can be produced with half the amount of fuel, making distributed generation an effective approach to reducing greenhouse gas emissions. According to official government reports, the creation of distributed generation systems will account for at least 5% of gas reduction. In this paper the conceptual design and development of an automated co-generation system to apply in collective residences is presented. After concluding the definition of the demanded specifications and requirements for the co-generation system it is presented and discussed the developed solution with the identification of the main components, including the selection and prototype implementation of the necessary sensors and actuators that integrate the system. It is also shown a systematized approach that consists in using the GEMMA and the SFC formalisms for the structure and specification of all the system behaviour, considering all the stop states and functioning modes of the co-generation system.(undefined)The National Institute of Research and Development in Mechatronics and Measurement Technique (INCDMTM)Universidade do MinhoSeabra, EuricoMachado, José MendesLima, Mário20122012-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/1822/22905eng1584-5982info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-07-21T12:20:48Zoai:repositorium.sdum.uminho.pt:1822/22905Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T19:13:57.184199Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Conceptual design and development of an automated co-generation system
title Conceptual design and development of an automated co-generation system
spellingShingle Conceptual design and development of an automated co-generation system
Seabra, Eurico
Co-generation
Mechatronic design
Controllers design
GEMMA
SFC
title_short Conceptual design and development of an automated co-generation system
title_full Conceptual design and development of an automated co-generation system
title_fullStr Conceptual design and development of an automated co-generation system
title_full_unstemmed Conceptual design and development of an automated co-generation system
title_sort Conceptual design and development of an automated co-generation system
author Seabra, Eurico
author_facet Seabra, Eurico
Machado, José Mendes
Lima, Mário
author_role author
author2 Machado, José Mendes
Lima, Mário
author2_role author
author
dc.contributor.none.fl_str_mv Universidade do Minho
dc.contributor.author.fl_str_mv Seabra, Eurico
Machado, José Mendes
Lima, Mário
dc.subject.por.fl_str_mv Co-generation
Mechatronic design
Controllers design
GEMMA
SFC
topic Co-generation
Mechatronic design
Controllers design
GEMMA
SFC
description Co-generation or Combined Heat and Power (CHP) is the simultaneous generation of both electricity and heat from the same fuel for useful purposes. The fuel varies greatly and can include coal, biomass, natural gas, nuclear material, the sun or heat stored in the earth. Co-generation (as a vector of energy efficiency) and renewable sources of energy possess their own set of low carbon benefits. Coupling co-generation and renewable sources contribute to a very strong proposition since it leads to the supply of both low-carbon electricity and low-carbon heat. In the case of co-generation plants fuelled by renewable energy sources, the low-carbon benefits of the heat are obvious since they derive from the renewable nature of the fuel. However, this also apply in the case of plants feed by other types of fuel. Such plants produce excess heat alongside electricity. When this heat, which is an unavoidable by-product, is used to satisfy an existing heat demand carbon dioxide (CO2) emissions are reduced overall, through a more efficient use of the fuel. The distributed generation systems produce energy close to the point of use, which typically doubles the efficiency in terms of fuel input‐to‐energy output ratio compared to conventional power generation in central plants. This means that the same amount of energy can be produced with half the amount of fuel, making distributed generation an effective approach to reducing greenhouse gas emissions. According to official government reports, the creation of distributed generation systems will account for at least 5% of gas reduction. In this paper the conceptual design and development of an automated co-generation system to apply in collective residences is presented. After concluding the definition of the demanded specifications and requirements for the co-generation system it is presented and discussed the developed solution with the identification of the main components, including the selection and prototype implementation of the necessary sensors and actuators that integrate the system. It is also shown a systematized approach that consists in using the GEMMA and the SFC formalisms for the structure and specification of all the system behaviour, considering all the stop states and functioning modes of the co-generation system.
publishDate 2012
dc.date.none.fl_str_mv 2012
2012-01-01T00:00:00Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/1822/22905
url http://hdl.handle.net/1822/22905
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 1584-5982
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv The National Institute of Research and Development in Mechatronics and Measurement Technique (INCDMTM)
publisher.none.fl_str_mv The National Institute of Research and Development in Mechatronics and Measurement Technique (INCDMTM)
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799132580794073088