A diffusion-based connectivity map of the GPi for optimised stereotactic targeting in DBS

Detalhes bibliográficos
Autor(a) principal: Nádia Moreira Silva
Data de Publicação: 2017
Outros Autores: Ahmadi,SA, Tafula,SN, João Paulo Cunha, Botzel,K, Vollmar,C, Rozanski,VE
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://repositorio.inesctec.pt/handle/123456789/6354
http://dx.doi.org/10.1016/j.neuroimage.2016.06.018
Resumo: Background: The GPi (globus pallidus internus) is an important target nucleus for Deep Brain Stimulation (DBS) in medically refractory movement disorders, in particular dystonia and Parkinson's disease. Beneficial clinical outcome critically depends on precise electrode localization. Recent evidence indicates that not only neurons, but also axonal fibre tracts contribute to promoting the clinical effect. Thus, stereotactic planning should, in the future, also take the individual course of fibre tracts into account. Objective: The aim of this project is to explore the GPi connectivity profile and provide a connectivity based parcellation of the GPi. Methods: Diffusion MRI sequences were performed in sixteen healthy, right-handed subjects. Connectivity-based parcellation of the GPi was performed applying two independent methods: 1) a hypothesis-driven, seed-to-target approach based on anatomic priors set as connectivity targets and 2) a purely data-driven approach based on k-means clustering of the GPi. Results: Applying the hypothesis-driven approach, we obtained five major parcellation clusters, displaying connectivity to the prefrontal cortex, the brainstem, the GPe (globus pallidus externus), the putamen and the thalamus. Parcellation clusters obtained by both methods were similar in their connectivity profile. With the data-driven approach, we obtained three major parcellation clusters. Inter individual variability was comparable with results obtained in thalamic parcellation. Conclusion: The three parcellation clusters obtained by the purely data-driven method might reflect GPi subdivision into a sensorimotor, associative and limbic portion. Clinical and physiological studies indicate greatest clinical DBS benefit for electrodes placed in the postero-ventro-lateral GPi, the region displaying connectivity to the thalamus in our study and generally attributed to the sensorimotor system. Clinical studies relating DBS electrode positions to our GPi connectivity map would be needed to complement our findings.
id RCAP_8e2c5eac9a81068bb74cb265e2d263a5
oai_identifier_str oai:repositorio.inesctec.pt:123456789/6354
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling A diffusion-based connectivity map of the GPi for optimised stereotactic targeting in DBSBackground: The GPi (globus pallidus internus) is an important target nucleus for Deep Brain Stimulation (DBS) in medically refractory movement disorders, in particular dystonia and Parkinson's disease. Beneficial clinical outcome critically depends on precise electrode localization. Recent evidence indicates that not only neurons, but also axonal fibre tracts contribute to promoting the clinical effect. Thus, stereotactic planning should, in the future, also take the individual course of fibre tracts into account. Objective: The aim of this project is to explore the GPi connectivity profile and provide a connectivity based parcellation of the GPi. Methods: Diffusion MRI sequences were performed in sixteen healthy, right-handed subjects. Connectivity-based parcellation of the GPi was performed applying two independent methods: 1) a hypothesis-driven, seed-to-target approach based on anatomic priors set as connectivity targets and 2) a purely data-driven approach based on k-means clustering of the GPi. Results: Applying the hypothesis-driven approach, we obtained five major parcellation clusters, displaying connectivity to the prefrontal cortex, the brainstem, the GPe (globus pallidus externus), the putamen and the thalamus. Parcellation clusters obtained by both methods were similar in their connectivity profile. With the data-driven approach, we obtained three major parcellation clusters. Inter individual variability was comparable with results obtained in thalamic parcellation. Conclusion: The three parcellation clusters obtained by the purely data-driven method might reflect GPi subdivision into a sensorimotor, associative and limbic portion. Clinical and physiological studies indicate greatest clinical DBS benefit for electrodes placed in the postero-ventro-lateral GPi, the region displaying connectivity to the thalamus in our study and generally attributed to the sensorimotor system. Clinical studies relating DBS electrode positions to our GPi connectivity map would be needed to complement our findings.2018-01-16T12:40:58Z2017-01-01T00:00:00Z2017info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://repositorio.inesctec.pt/handle/123456789/6354http://dx.doi.org/10.1016/j.neuroimage.2016.06.018engNádia Moreira SilvaAhmadi,SATafula,SNJoão Paulo CunhaBotzel,KVollmar,CRozanski,VEinfo:eu-repo/semantics/embargoedAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-05-15T10:19:52Zoai:repositorio.inesctec.pt:123456789/6354Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T17:52:21.967015Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv A diffusion-based connectivity map of the GPi for optimised stereotactic targeting in DBS
title A diffusion-based connectivity map of the GPi for optimised stereotactic targeting in DBS
spellingShingle A diffusion-based connectivity map of the GPi for optimised stereotactic targeting in DBS
Nádia Moreira Silva
title_short A diffusion-based connectivity map of the GPi for optimised stereotactic targeting in DBS
title_full A diffusion-based connectivity map of the GPi for optimised stereotactic targeting in DBS
title_fullStr A diffusion-based connectivity map of the GPi for optimised stereotactic targeting in DBS
title_full_unstemmed A diffusion-based connectivity map of the GPi for optimised stereotactic targeting in DBS
title_sort A diffusion-based connectivity map of the GPi for optimised stereotactic targeting in DBS
author Nádia Moreira Silva
author_facet Nádia Moreira Silva
Ahmadi,SA
Tafula,SN
João Paulo Cunha
Botzel,K
Vollmar,C
Rozanski,VE
author_role author
author2 Ahmadi,SA
Tafula,SN
João Paulo Cunha
Botzel,K
Vollmar,C
Rozanski,VE
author2_role author
author
author
author
author
author
dc.contributor.author.fl_str_mv Nádia Moreira Silva
Ahmadi,SA
Tafula,SN
João Paulo Cunha
Botzel,K
Vollmar,C
Rozanski,VE
description Background: The GPi (globus pallidus internus) is an important target nucleus for Deep Brain Stimulation (DBS) in medically refractory movement disorders, in particular dystonia and Parkinson's disease. Beneficial clinical outcome critically depends on precise electrode localization. Recent evidence indicates that not only neurons, but also axonal fibre tracts contribute to promoting the clinical effect. Thus, stereotactic planning should, in the future, also take the individual course of fibre tracts into account. Objective: The aim of this project is to explore the GPi connectivity profile and provide a connectivity based parcellation of the GPi. Methods: Diffusion MRI sequences were performed in sixteen healthy, right-handed subjects. Connectivity-based parcellation of the GPi was performed applying two independent methods: 1) a hypothesis-driven, seed-to-target approach based on anatomic priors set as connectivity targets and 2) a purely data-driven approach based on k-means clustering of the GPi. Results: Applying the hypothesis-driven approach, we obtained five major parcellation clusters, displaying connectivity to the prefrontal cortex, the brainstem, the GPe (globus pallidus externus), the putamen and the thalamus. Parcellation clusters obtained by both methods were similar in their connectivity profile. With the data-driven approach, we obtained three major parcellation clusters. Inter individual variability was comparable with results obtained in thalamic parcellation. Conclusion: The three parcellation clusters obtained by the purely data-driven method might reflect GPi subdivision into a sensorimotor, associative and limbic portion. Clinical and physiological studies indicate greatest clinical DBS benefit for electrodes placed in the postero-ventro-lateral GPi, the region displaying connectivity to the thalamus in our study and generally attributed to the sensorimotor system. Clinical studies relating DBS electrode positions to our GPi connectivity map would be needed to complement our findings.
publishDate 2017
dc.date.none.fl_str_mv 2017-01-01T00:00:00Z
2017
2018-01-16T12:40:58Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://repositorio.inesctec.pt/handle/123456789/6354
http://dx.doi.org/10.1016/j.neuroimage.2016.06.018
url http://repositorio.inesctec.pt/handle/123456789/6354
http://dx.doi.org/10.1016/j.neuroimage.2016.06.018
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/embargoedAccess
eu_rights_str_mv embargoedAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799131599964471296