Experimental determination of invasive fitness in Caenorhabditis elegans
Autor(a) principal: | |
---|---|
Data de Publicação: | 2014 |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10400.7/809 |
Resumo: | Estimation of fitness is a key step in experimental evolution studies. However, no established methods currently exist to specifically estimate how successful new alleles are in invading populations. The main reason is that most assays do not accurately reflect the randomness associated with the first stages of the invasion, when invaders are rare and extinctions are frequent. In this protocol, I describe how such experiments can be done in an effective way. By using the nematode model, Caenorhabditis elegans, a large number of invasion experiments are set up, whereby invading individuals carrying a visual marker are introduced into populations in very low numbers. The number of invaders counted in consecutive generations, together with the number of extinctions, is then used in the context of individual-based computer simulations to provide likelihood (Lk) estimates for fitness. This protocol can take up to five generations of experimental invasions and a few hours of computer processing time. |
id |
RCAP_8f2630ae5b914fc79b6d3a4e808b7301 |
---|---|
oai_identifier_str |
oai:arca.igc.gulbenkian.pt:10400.7/809 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Experimental determination of invasive fitness in Caenorhabditis elegansAnimalsCaenorhabditis elegansComputer SimulationGenetic FitnessLikelihood FunctionsAllelesGenetics, PopulationEstimation of fitness is a key step in experimental evolution studies. However, no established methods currently exist to specifically estimate how successful new alleles are in invading populations. The main reason is that most assays do not accurately reflect the randomness associated with the first stages of the invasion, when invaders are rare and extinctions are frequent. In this protocol, I describe how such experiments can be done in an effective way. By using the nematode model, Caenorhabditis elegans, a large number of invasion experiments are set up, whereby invading individuals carrying a visual marker are introduced into populations in very low numbers. The number of invaders counted in consecutive generations, together with the number of extinctions, is then used in the context of individual-based computer simulations to provide likelihood (Lk) estimates for fitness. This protocol can take up to five generations of experimental invasions and a few hours of computer processing time.Nature Publishing GroupARCAChelo, Ivo M2017-11-22T12:34:53Z2014-05-222014-05-22T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10400.7/809eng10.1038/nprot.2014.098info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-11-21T14:20:18Zoai:arca.igc.gulbenkian.pt:10400.7/809Portal AgregadorONGhttps://www.rcaap.pt/oai/openairemluisa.alvim@gmail.comopendoar:71602024-11-21T14:20:18Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Experimental determination of invasive fitness in Caenorhabditis elegans |
title |
Experimental determination of invasive fitness in Caenorhabditis elegans |
spellingShingle |
Experimental determination of invasive fitness in Caenorhabditis elegans Chelo, Ivo M Animals Caenorhabditis elegans Computer Simulation Genetic Fitness Likelihood Functions Alleles Genetics, Population |
title_short |
Experimental determination of invasive fitness in Caenorhabditis elegans |
title_full |
Experimental determination of invasive fitness in Caenorhabditis elegans |
title_fullStr |
Experimental determination of invasive fitness in Caenorhabditis elegans |
title_full_unstemmed |
Experimental determination of invasive fitness in Caenorhabditis elegans |
title_sort |
Experimental determination of invasive fitness in Caenorhabditis elegans |
author |
Chelo, Ivo M |
author_facet |
Chelo, Ivo M |
author_role |
author |
dc.contributor.none.fl_str_mv |
ARCA |
dc.contributor.author.fl_str_mv |
Chelo, Ivo M |
dc.subject.por.fl_str_mv |
Animals Caenorhabditis elegans Computer Simulation Genetic Fitness Likelihood Functions Alleles Genetics, Population |
topic |
Animals Caenorhabditis elegans Computer Simulation Genetic Fitness Likelihood Functions Alleles Genetics, Population |
description |
Estimation of fitness is a key step in experimental evolution studies. However, no established methods currently exist to specifically estimate how successful new alleles are in invading populations. The main reason is that most assays do not accurately reflect the randomness associated with the first stages of the invasion, when invaders are rare and extinctions are frequent. In this protocol, I describe how such experiments can be done in an effective way. By using the nematode model, Caenorhabditis elegans, a large number of invasion experiments are set up, whereby invading individuals carrying a visual marker are introduced into populations in very low numbers. The number of invaders counted in consecutive generations, together with the number of extinctions, is then used in the context of individual-based computer simulations to provide likelihood (Lk) estimates for fitness. This protocol can take up to five generations of experimental invasions and a few hours of computer processing time. |
publishDate |
2014 |
dc.date.none.fl_str_mv |
2014-05-22 2014-05-22T00:00:00Z 2017-11-22T12:34:53Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10400.7/809 |
url |
http://hdl.handle.net/10400.7/809 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
10.1038/nprot.2014.098 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Nature Publishing Group |
publisher.none.fl_str_mv |
Nature Publishing Group |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
mluisa.alvim@gmail.com |
_version_ |
1817549559935533056 |