Spin-induced scalarization and magnetic fields

Detalhes bibliográficos
Autor(a) principal: Annulli, Lorenzo
Data de Publicação: 2022
Outros Autores: Herdeiro, Carlos A. R., Radu, Eugen
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10773/35211
Resumo: In the presence of certain non-minimal couplings between a scalar field and the Gauss-Bonnet curvature invariant, Kerr black holes can scalarize, as long as they are spinning fast enough. This provides a distinctive violation of the Kerr hypothesis, occurring only for some high spin range. In this paper we assess if strong magnetic fields, that may exist in the vicinity of astrophysical black holes, could facilitate this distinctive effect, by bringing down the spin threshold for scalarization. This inquiry is motivated by the fact that self-gravitating magnetic fields, by themselves, can also promote "spin-induced" scalarization. Nonetheless, we show that in the \textit{vicinity of the horizon} the effect of the magnetic field $B$ on a black hole of mass $M$, up to $BM\lesssim 1$, works \textit{against} spin-induced scalarization, requiring a larger dimensionless spin $j$ from the black hole. A geometric interpretation for this result is suggested, in terms of the effects of rotation $vs.$ magnetic fields on the horizon geometry.
id RCAP_8fc577881bf2fc5bb69e13d2d3f03115
oai_identifier_str oai:ria.ua.pt:10773/35211
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Spin-induced scalarization and magnetic fieldsIn the presence of certain non-minimal couplings between a scalar field and the Gauss-Bonnet curvature invariant, Kerr black holes can scalarize, as long as they are spinning fast enough. This provides a distinctive violation of the Kerr hypothesis, occurring only for some high spin range. In this paper we assess if strong magnetic fields, that may exist in the vicinity of astrophysical black holes, could facilitate this distinctive effect, by bringing down the spin threshold for scalarization. This inquiry is motivated by the fact that self-gravitating magnetic fields, by themselves, can also promote "spin-induced" scalarization. Nonetheless, we show that in the \textit{vicinity of the horizon} the effect of the magnetic field $B$ on a black hole of mass $M$, up to $BM\lesssim 1$, works \textit{against} spin-induced scalarization, requiring a larger dimensionless spin $j$ from the black hole. A geometric interpretation for this result is suggested, in terms of the effects of rotation $vs.$ magnetic fields on the horizon geometry.Elsevier2022-11-18T11:53:04Z2022-03-24T00:00:00Z2022-03-24info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10773/35211eng0370-269310.1016/j.physletb.2022.137227Annulli, LorenzoHerdeiro, Carlos A. R.Radu, Eugeninfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-02-22T12:07:40Zoai:ria.ua.pt:10773/35211Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T03:06:13.983891Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Spin-induced scalarization and magnetic fields
title Spin-induced scalarization and magnetic fields
spellingShingle Spin-induced scalarization and magnetic fields
Annulli, Lorenzo
title_short Spin-induced scalarization and magnetic fields
title_full Spin-induced scalarization and magnetic fields
title_fullStr Spin-induced scalarization and magnetic fields
title_full_unstemmed Spin-induced scalarization and magnetic fields
title_sort Spin-induced scalarization and magnetic fields
author Annulli, Lorenzo
author_facet Annulli, Lorenzo
Herdeiro, Carlos A. R.
Radu, Eugen
author_role author
author2 Herdeiro, Carlos A. R.
Radu, Eugen
author2_role author
author
dc.contributor.author.fl_str_mv Annulli, Lorenzo
Herdeiro, Carlos A. R.
Radu, Eugen
description In the presence of certain non-minimal couplings between a scalar field and the Gauss-Bonnet curvature invariant, Kerr black holes can scalarize, as long as they are spinning fast enough. This provides a distinctive violation of the Kerr hypothesis, occurring only for some high spin range. In this paper we assess if strong magnetic fields, that may exist in the vicinity of astrophysical black holes, could facilitate this distinctive effect, by bringing down the spin threshold for scalarization. This inquiry is motivated by the fact that self-gravitating magnetic fields, by themselves, can also promote "spin-induced" scalarization. Nonetheless, we show that in the \textit{vicinity of the horizon} the effect of the magnetic field $B$ on a black hole of mass $M$, up to $BM\lesssim 1$, works \textit{against} spin-induced scalarization, requiring a larger dimensionless spin $j$ from the black hole. A geometric interpretation for this result is suggested, in terms of the effects of rotation $vs.$ magnetic fields on the horizon geometry.
publishDate 2022
dc.date.none.fl_str_mv 2022-11-18T11:53:04Z
2022-03-24T00:00:00Z
2022-03-24
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10773/35211
url http://hdl.handle.net/10773/35211
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 0370-2693
10.1016/j.physletb.2022.137227
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Elsevier
publisher.none.fl_str_mv Elsevier
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799137717312815104