Spontaneous scalarization of a conducting sphere in Maxwell-scalar models
Autor(a) principal: | |
---|---|
Data de Publicação: | 2021 |
Outros Autores: | , , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10773/30632 |
Resumo: | We study the spontaneous scalarization of a standard conducting charged sphere embedded in Maxwell-scalar models in flat spacetime, wherein the scalar field ϕ is nonminimally coupled to the Maxwell electrodynamics. This setup serves as a toy model for the spontaneous scalarization of charged (vacuum) black holes in Einstein-Maxwell-scalar (generalized scalar-tensor) models. In the Maxwell-scalar case, unlike the black hole cases, closed-form solutions exist for the scalarized configurations. We compute these configurations for three illustrations of nonminimal couplings: one that exactly linearizes the scalar field equation, and the remaining two that produce nonlinear continuations of the first one. We show that the former model leads to a runaway behavior in regions of the parameter space and neither the Coulomb nor the scalarized solutions are stable in the model; but the latter models can heal this behavior producing stable scalarized solutions that are dynamically preferred over the Coulomb one. This parallels reports on black hole scalarization in the extended-scalar-Gauss-Bonnet models. Moreover, we analyze the impact of the choice of the boundary conditions on the scalarization phenomenon. Dirichlet and Neumann boundary conditions accommodate both (linearly) stable and unstable parameter space regions, for the scalar-free conducting sphere; but radiative boundary conditions always yield an unstable scalar-free solution and preference for scalarization. Finally, we perform numerical evolution of the full Maxwell-scalar system, following dynamically the scalarization process. They confirm the linear stability analysis and reveal that the scalarization phenomenon can occur in qualitatively distinct ways. |
id |
RCAP_c14ccc692c136f0e3971414caf21738c |
---|---|
oai_identifier_str |
oai:ria.ua.pt:10773/30632 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Spontaneous scalarization of a conducting sphere in Maxwell-scalar modelsWe study the spontaneous scalarization of a standard conducting charged sphere embedded in Maxwell-scalar models in flat spacetime, wherein the scalar field ϕ is nonminimally coupled to the Maxwell electrodynamics. This setup serves as a toy model for the spontaneous scalarization of charged (vacuum) black holes in Einstein-Maxwell-scalar (generalized scalar-tensor) models. In the Maxwell-scalar case, unlike the black hole cases, closed-form solutions exist for the scalarized configurations. We compute these configurations for three illustrations of nonminimal couplings: one that exactly linearizes the scalar field equation, and the remaining two that produce nonlinear continuations of the first one. We show that the former model leads to a runaway behavior in regions of the parameter space and neither the Coulomb nor the scalarized solutions are stable in the model; but the latter models can heal this behavior producing stable scalarized solutions that are dynamically preferred over the Coulomb one. This parallels reports on black hole scalarization in the extended-scalar-Gauss-Bonnet models. Moreover, we analyze the impact of the choice of the boundary conditions on the scalarization phenomenon. Dirichlet and Neumann boundary conditions accommodate both (linearly) stable and unstable parameter space regions, for the scalar-free conducting sphere; but radiative boundary conditions always yield an unstable scalar-free solution and preference for scalarization. Finally, we perform numerical evolution of the full Maxwell-scalar system, following dynamically the scalarization process. They confirm the linear stability analysis and reveal that the scalarization phenomenon can occur in qualitatively distinct ways.American Physical Society2021-02-18T10:27:25Z2021-02-15T00:00:00Z2021-02-15info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10773/30632eng2470-001010.1103/PhysRevD.103.044019Herdeiro, Carlos A. R.Ikeda, TaishiMinamitsuji, MasatoNakamura, TomohiroRadu, Eugeninfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-02-22T11:59:09Zoai:ria.ua.pt:10773/30632Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T03:02:40.280013Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Spontaneous scalarization of a conducting sphere in Maxwell-scalar models |
title |
Spontaneous scalarization of a conducting sphere in Maxwell-scalar models |
spellingShingle |
Spontaneous scalarization of a conducting sphere in Maxwell-scalar models Herdeiro, Carlos A. R. |
title_short |
Spontaneous scalarization of a conducting sphere in Maxwell-scalar models |
title_full |
Spontaneous scalarization of a conducting sphere in Maxwell-scalar models |
title_fullStr |
Spontaneous scalarization of a conducting sphere in Maxwell-scalar models |
title_full_unstemmed |
Spontaneous scalarization of a conducting sphere in Maxwell-scalar models |
title_sort |
Spontaneous scalarization of a conducting sphere in Maxwell-scalar models |
author |
Herdeiro, Carlos A. R. |
author_facet |
Herdeiro, Carlos A. R. Ikeda, Taishi Minamitsuji, Masato Nakamura, Tomohiro Radu, Eugen |
author_role |
author |
author2 |
Ikeda, Taishi Minamitsuji, Masato Nakamura, Tomohiro Radu, Eugen |
author2_role |
author author author author |
dc.contributor.author.fl_str_mv |
Herdeiro, Carlos A. R. Ikeda, Taishi Minamitsuji, Masato Nakamura, Tomohiro Radu, Eugen |
description |
We study the spontaneous scalarization of a standard conducting charged sphere embedded in Maxwell-scalar models in flat spacetime, wherein the scalar field ϕ is nonminimally coupled to the Maxwell electrodynamics. This setup serves as a toy model for the spontaneous scalarization of charged (vacuum) black holes in Einstein-Maxwell-scalar (generalized scalar-tensor) models. In the Maxwell-scalar case, unlike the black hole cases, closed-form solutions exist for the scalarized configurations. We compute these configurations for three illustrations of nonminimal couplings: one that exactly linearizes the scalar field equation, and the remaining two that produce nonlinear continuations of the first one. We show that the former model leads to a runaway behavior in regions of the parameter space and neither the Coulomb nor the scalarized solutions are stable in the model; but the latter models can heal this behavior producing stable scalarized solutions that are dynamically preferred over the Coulomb one. This parallels reports on black hole scalarization in the extended-scalar-Gauss-Bonnet models. Moreover, we analyze the impact of the choice of the boundary conditions on the scalarization phenomenon. Dirichlet and Neumann boundary conditions accommodate both (linearly) stable and unstable parameter space regions, for the scalar-free conducting sphere; but radiative boundary conditions always yield an unstable scalar-free solution and preference for scalarization. Finally, we perform numerical evolution of the full Maxwell-scalar system, following dynamically the scalarization process. They confirm the linear stability analysis and reveal that the scalarization phenomenon can occur in qualitatively distinct ways. |
publishDate |
2021 |
dc.date.none.fl_str_mv |
2021-02-18T10:27:25Z 2021-02-15T00:00:00Z 2021-02-15 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10773/30632 |
url |
http://hdl.handle.net/10773/30632 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
2470-0010 10.1103/PhysRevD.103.044019 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
American Physical Society |
publisher.none.fl_str_mv |
American Physical Society |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799137682369019904 |