Spontaneous scalarization of a conducting sphere in Maxwell-scalar models

Detalhes bibliográficos
Autor(a) principal: Herdeiro, Carlos A. R.
Data de Publicação: 2021
Outros Autores: Ikeda, Taishi, Minamitsuji, Masato, Nakamura, Tomohiro, Radu, Eugen
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10773/30632
Resumo: We study the spontaneous scalarization of a standard conducting charged sphere embedded in Maxwell-scalar models in flat spacetime, wherein the scalar field ϕ is nonminimally coupled to the Maxwell electrodynamics. This setup serves as a toy model for the spontaneous scalarization of charged (vacuum) black holes in Einstein-Maxwell-scalar (generalized scalar-tensor) models. In the Maxwell-scalar case, unlike the black hole cases, closed-form solutions exist for the scalarized configurations. We compute these configurations for three illustrations of nonminimal couplings: one that exactly linearizes the scalar field equation, and the remaining two that produce nonlinear continuations of the first one. We show that the former model leads to a runaway behavior in regions of the parameter space and neither the Coulomb nor the scalarized solutions are stable in the model; but the latter models can heal this behavior producing stable scalarized solutions that are dynamically preferred over the Coulomb one. This parallels reports on black hole scalarization in the extended-scalar-Gauss-Bonnet models. Moreover, we analyze the impact of the choice of the boundary conditions on the scalarization phenomenon. Dirichlet and Neumann boundary conditions accommodate both (linearly) stable and unstable parameter space regions, for the scalar-free conducting sphere; but radiative boundary conditions always yield an unstable scalar-free solution and preference for scalarization. Finally, we perform numerical evolution of the full Maxwell-scalar system, following dynamically the scalarization process. They confirm the linear stability analysis and reveal that the scalarization phenomenon can occur in qualitatively distinct ways.
id RCAP_c14ccc692c136f0e3971414caf21738c
oai_identifier_str oai:ria.ua.pt:10773/30632
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Spontaneous scalarization of a conducting sphere in Maxwell-scalar modelsWe study the spontaneous scalarization of a standard conducting charged sphere embedded in Maxwell-scalar models in flat spacetime, wherein the scalar field ϕ is nonminimally coupled to the Maxwell electrodynamics. This setup serves as a toy model for the spontaneous scalarization of charged (vacuum) black holes in Einstein-Maxwell-scalar (generalized scalar-tensor) models. In the Maxwell-scalar case, unlike the black hole cases, closed-form solutions exist for the scalarized configurations. We compute these configurations for three illustrations of nonminimal couplings: one that exactly linearizes the scalar field equation, and the remaining two that produce nonlinear continuations of the first one. We show that the former model leads to a runaway behavior in regions of the parameter space and neither the Coulomb nor the scalarized solutions are stable in the model; but the latter models can heal this behavior producing stable scalarized solutions that are dynamically preferred over the Coulomb one. This parallels reports on black hole scalarization in the extended-scalar-Gauss-Bonnet models. Moreover, we analyze the impact of the choice of the boundary conditions on the scalarization phenomenon. Dirichlet and Neumann boundary conditions accommodate both (linearly) stable and unstable parameter space regions, for the scalar-free conducting sphere; but radiative boundary conditions always yield an unstable scalar-free solution and preference for scalarization. Finally, we perform numerical evolution of the full Maxwell-scalar system, following dynamically the scalarization process. They confirm the linear stability analysis and reveal that the scalarization phenomenon can occur in qualitatively distinct ways.American Physical Society2021-02-18T10:27:25Z2021-02-15T00:00:00Z2021-02-15info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10773/30632eng2470-001010.1103/PhysRevD.103.044019Herdeiro, Carlos A. R.Ikeda, TaishiMinamitsuji, MasatoNakamura, TomohiroRadu, Eugeninfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-02-22T11:59:09Zoai:ria.ua.pt:10773/30632Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T03:02:40.280013Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Spontaneous scalarization of a conducting sphere in Maxwell-scalar models
title Spontaneous scalarization of a conducting sphere in Maxwell-scalar models
spellingShingle Spontaneous scalarization of a conducting sphere in Maxwell-scalar models
Herdeiro, Carlos A. R.
title_short Spontaneous scalarization of a conducting sphere in Maxwell-scalar models
title_full Spontaneous scalarization of a conducting sphere in Maxwell-scalar models
title_fullStr Spontaneous scalarization of a conducting sphere in Maxwell-scalar models
title_full_unstemmed Spontaneous scalarization of a conducting sphere in Maxwell-scalar models
title_sort Spontaneous scalarization of a conducting sphere in Maxwell-scalar models
author Herdeiro, Carlos A. R.
author_facet Herdeiro, Carlos A. R.
Ikeda, Taishi
Minamitsuji, Masato
Nakamura, Tomohiro
Radu, Eugen
author_role author
author2 Ikeda, Taishi
Minamitsuji, Masato
Nakamura, Tomohiro
Radu, Eugen
author2_role author
author
author
author
dc.contributor.author.fl_str_mv Herdeiro, Carlos A. R.
Ikeda, Taishi
Minamitsuji, Masato
Nakamura, Tomohiro
Radu, Eugen
description We study the spontaneous scalarization of a standard conducting charged sphere embedded in Maxwell-scalar models in flat spacetime, wherein the scalar field ϕ is nonminimally coupled to the Maxwell electrodynamics. This setup serves as a toy model for the spontaneous scalarization of charged (vacuum) black holes in Einstein-Maxwell-scalar (generalized scalar-tensor) models. In the Maxwell-scalar case, unlike the black hole cases, closed-form solutions exist for the scalarized configurations. We compute these configurations for three illustrations of nonminimal couplings: one that exactly linearizes the scalar field equation, and the remaining two that produce nonlinear continuations of the first one. We show that the former model leads to a runaway behavior in regions of the parameter space and neither the Coulomb nor the scalarized solutions are stable in the model; but the latter models can heal this behavior producing stable scalarized solutions that are dynamically preferred over the Coulomb one. This parallels reports on black hole scalarization in the extended-scalar-Gauss-Bonnet models. Moreover, we analyze the impact of the choice of the boundary conditions on the scalarization phenomenon. Dirichlet and Neumann boundary conditions accommodate both (linearly) stable and unstable parameter space regions, for the scalar-free conducting sphere; but radiative boundary conditions always yield an unstable scalar-free solution and preference for scalarization. Finally, we perform numerical evolution of the full Maxwell-scalar system, following dynamically the scalarization process. They confirm the linear stability analysis and reveal that the scalarization phenomenon can occur in qualitatively distinct ways.
publishDate 2021
dc.date.none.fl_str_mv 2021-02-18T10:27:25Z
2021-02-15T00:00:00Z
2021-02-15
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10773/30632
url http://hdl.handle.net/10773/30632
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 2470-0010
10.1103/PhysRevD.103.044019
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv American Physical Society
publisher.none.fl_str_mv American Physical Society
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799137682369019904