Predicting M&A targets using news sentiment and topic detection
Autor(a) principal: | |
---|---|
Data de Publicação: | 2024 |
Outros Autores: | |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10362/163548 |
Resumo: | Hajek, P., & Henriques, R. (2024). Predicting M&A targets using news sentiment and topic detection. Technological Forecasting and Social Change, 201, 1-12. Article 123270. https://doi.org/10.1016/j.techfore.2024.123270 --- The authors acknowledge the financial support of the Czech Science Foundation [Grant No. 22-22586S] |
id |
RCAP_9172c6f245852ed7728e8fee574d4b66 |
---|---|
oai_identifier_str |
oai:run.unl.pt:10362/163548 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Predicting M&A targets using news sentiment and topic detectionM&ATakeoverNewsSentimentTopic detectionBERTBusiness and International ManagementApplied PsychologyManagement of Technology and InnovationHajek, P., & Henriques, R. (2024). Predicting M&A targets using news sentiment and topic detection. Technological Forecasting and Social Change, 201, 1-12. Article 123270. https://doi.org/10.1016/j.techfore.2024.123270 --- The authors acknowledge the financial support of the Czech Science Foundation [Grant No. 22-22586S]This paper uses news sentiment and topics to discuss the challenges and opportunities of predicting mergers and acquisition (M&A) targets. We explore the effect of investor sentiment on identifying M&As targets and how company-specific news articles can be used as a source of sentiment and topics to obtain richer information on various corporate events. We propose a framework incorporating news sentiment and topics into the M&A target prediction model, utilising state-of-the-art transformer-based sentiment analysis and topic modelling approaches. We evaluate the textual features' predictive power using a real-world dataset of US and UK target and non-target companies from 2020 to 2021, with several experiments conducted to reveal the contribution of sentiment and thematic focus of news to M&A target prediction. A profit-based objective function is proposed to overcome the inherent class imbalance problem in the dataset. Our findings suggest that news-based prediction models outperform traditional statistical and single machine learning methods, indicating the need for more robust and less prone to overfitting ensemble learning methods. Additionally, our study provides evidence for the positive effect of news-based negative sentiment on the likelihood of M&A. Our research has important implications for investors and analysts who seek to identify investment opportunities.NOVA Information Management School (NOVA IMS)Information Management Research Center (MagIC) - NOVA Information Management SchoolRUNHajek, PetrHenriques, Roberto2024-02-15T00:08:14Z2024-04-012024-04-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article12application/pdfhttp://hdl.handle.net/10362/163548eng0040-1625PURE: 83422345https://doi.org/10.1016/j.techfore.2024.123270info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-03-18T01:43:53Zoai:run.unl.pt:10362/163548Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T03:59:27.368715Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Predicting M&A targets using news sentiment and topic detection |
title |
Predicting M&A targets using news sentiment and topic detection |
spellingShingle |
Predicting M&A targets using news sentiment and topic detection Hajek, Petr M&A Takeover News Sentiment Topic detection BERT Business and International Management Applied Psychology Management of Technology and Innovation |
title_short |
Predicting M&A targets using news sentiment and topic detection |
title_full |
Predicting M&A targets using news sentiment and topic detection |
title_fullStr |
Predicting M&A targets using news sentiment and topic detection |
title_full_unstemmed |
Predicting M&A targets using news sentiment and topic detection |
title_sort |
Predicting M&A targets using news sentiment and topic detection |
author |
Hajek, Petr |
author_facet |
Hajek, Petr Henriques, Roberto |
author_role |
author |
author2 |
Henriques, Roberto |
author2_role |
author |
dc.contributor.none.fl_str_mv |
NOVA Information Management School (NOVA IMS) Information Management Research Center (MagIC) - NOVA Information Management School RUN |
dc.contributor.author.fl_str_mv |
Hajek, Petr Henriques, Roberto |
dc.subject.por.fl_str_mv |
M&A Takeover News Sentiment Topic detection BERT Business and International Management Applied Psychology Management of Technology and Innovation |
topic |
M&A Takeover News Sentiment Topic detection BERT Business and International Management Applied Psychology Management of Technology and Innovation |
description |
Hajek, P., & Henriques, R. (2024). Predicting M&A targets using news sentiment and topic detection. Technological Forecasting and Social Change, 201, 1-12. Article 123270. https://doi.org/10.1016/j.techfore.2024.123270 --- The authors acknowledge the financial support of the Czech Science Foundation [Grant No. 22-22586S] |
publishDate |
2024 |
dc.date.none.fl_str_mv |
2024-02-15T00:08:14Z 2024-04-01 2024-04-01T00:00:00Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10362/163548 |
url |
http://hdl.handle.net/10362/163548 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
0040-1625 PURE: 83422345 https://doi.org/10.1016/j.techfore.2024.123270 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
12 application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799138174321033216 |