Sentiment analysis and topic classification based on binary maximum entropy classifiers
Autor(a) principal: | |
---|---|
Data de Publicação: | 2013 |
Outros Autores: | |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | https://ciencia.iscte-iul.pt/public/pub/id/13632 http://hdl.handle.net/10071/10036 |
Resumo: | This paper presents a strategy based on binary maximum entropy classifiers for automatic sentiment analysis and topic classification over Spanish Twitter data. The developed system achieved the best results for topic classification, and the second place for sentiment analysis in a joint evaluation effort — the TASS challenge. Different configurations have been explored for both tasks, leading to the use of a cascade of binary classifiers for sentiment analysis and a one-vs-all strategy for topic classification, where the most probable topics for each tweet were selected. |
id |
RCAP_3955478f8c491b3aa38e7ce5d7be1955 |
---|---|
oai_identifier_str |
oai:repositorio.iscte-iul.pt:10071/10036 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Sentiment analysis and topic classification based on binary maximum entropy classifiersSentiment analysisTopic detectionSocial mediaLogistic regressionMaximum entropyThis paper presents a strategy based on binary maximum entropy classifiers for automatic sentiment analysis and topic classification over Spanish Twitter data. The developed system achieved the best results for topic classification, and the second place for sentiment analysis in a joint evaluation effort — the TASS challenge. Different configurations have been explored for both tasks, leading to the use of a cascade of binary classifiers for sentiment analysis and a one-vs-all strategy for topic classification, where the most probable topics for each tweet were selected.Sociedad Española para el Procesamiento del Lenguaje Natural2015-10-28T13:21:51Z2013-01-01T00:00:00Z20132015-10-28T13:18:03Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttps://ciencia.iscte-iul.pt/public/pub/id/13632http://hdl.handle.net/10071/10036eng1135-5948Batista, F.Ribeiro, R.info:eu-repo/semantics/embargoedAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-07-07T03:05:03Zoai:repositorio.iscte-iul.pt:10071/10036Portal AgregadorONGhttps://www.rcaap.pt/oai/openairemluisa.alvim@gmail.comopendoar:71602024-07-07T03:05:03Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Sentiment analysis and topic classification based on binary maximum entropy classifiers |
title |
Sentiment analysis and topic classification based on binary maximum entropy classifiers |
spellingShingle |
Sentiment analysis and topic classification based on binary maximum entropy classifiers Batista, F. Sentiment analysis Topic detection Social media Logistic regression Maximum entropy |
title_short |
Sentiment analysis and topic classification based on binary maximum entropy classifiers |
title_full |
Sentiment analysis and topic classification based on binary maximum entropy classifiers |
title_fullStr |
Sentiment analysis and topic classification based on binary maximum entropy classifiers |
title_full_unstemmed |
Sentiment analysis and topic classification based on binary maximum entropy classifiers |
title_sort |
Sentiment analysis and topic classification based on binary maximum entropy classifiers |
author |
Batista, F. |
author_facet |
Batista, F. Ribeiro, R. |
author_role |
author |
author2 |
Ribeiro, R. |
author2_role |
author |
dc.contributor.author.fl_str_mv |
Batista, F. Ribeiro, R. |
dc.subject.por.fl_str_mv |
Sentiment analysis Topic detection Social media Logistic regression Maximum entropy |
topic |
Sentiment analysis Topic detection Social media Logistic regression Maximum entropy |
description |
This paper presents a strategy based on binary maximum entropy classifiers for automatic sentiment analysis and topic classification over Spanish Twitter data. The developed system achieved the best results for topic classification, and the second place for sentiment analysis in a joint evaluation effort — the TASS challenge. Different configurations have been explored for both tasks, leading to the use of a cascade of binary classifiers for sentiment analysis and a one-vs-all strategy for topic classification, where the most probable topics for each tweet were selected. |
publishDate |
2013 |
dc.date.none.fl_str_mv |
2013-01-01T00:00:00Z 2013 2015-10-28T13:21:51Z 2015-10-28T13:18:03Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://ciencia.iscte-iul.pt/public/pub/id/13632 http://hdl.handle.net/10071/10036 |
url |
https://ciencia.iscte-iul.pt/public/pub/id/13632 http://hdl.handle.net/10071/10036 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
1135-5948 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/embargoedAccess |
eu_rights_str_mv |
embargoedAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Sociedad Española para el Procesamiento del Lenguaje Natural |
publisher.none.fl_str_mv |
Sociedad Española para el Procesamiento del Lenguaje Natural |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
mluisa.alvim@gmail.com |
_version_ |
1817546393704726528 |