Adverse Outcomes Prediction for Congenital Heart Surgery
Autor(a) principal: | |
---|---|
Data de Publicação: | 2021 |
Outros Autores: | , , , , , , , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10362/150568 |
Resumo: | Funding Information: The authors wish to gratefully acknowledge the contributions of all ECDB participating surgeons and centers, as the contributions of the data concerning their patients who had surgery with CHD over the years have made this study possible. The author(s) received no financial support for the research, authorship, and/or publication of this article. Publisher Copyright: © The Author(s) 2021. |
id |
RCAP_91e9641298fd3097bd6f5384420173be |
---|---|
oai_identifier_str |
oai:run.unl.pt:10362/150568 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Adverse Outcomes Prediction for Congenital Heart SurgeryA Machine Learning Approachartificial intelligencecongenital heart surgeryoutcomesstatistics-risk analysis/modelingstatistics-survival analysisSurgeryPediatrics, Perinatology, and Child HealthCardiology and Cardiovascular MedicineFunding Information: The authors wish to gratefully acknowledge the contributions of all ECDB participating surgeons and centers, as the contributions of the data concerning their patients who had surgery with CHD over the years have made this study possible. The author(s) received no financial support for the research, authorship, and/or publication of this article. Publisher Copyright: © The Author(s) 2021.Objective: Risk assessment tools typically used in congenital heart surgery (CHS) assume that various possible risk factors interact in a linear and additive fashion, an assumption that may not reflect reality. Using artificial intelligence techniques, we sought to develop nonlinear models for predicting outcomes in CHS. Methods: We built machine learning (ML) models to predict mortality, postoperative mechanical ventilatory support time (MVST), and hospital length of stay (LOS) for patients who underwent CHS, based on data of more than 235,000 patients and 295,000 operations provided by the European Congenital Heart Surgeons Association Congenital Database. We used optimal classification trees (OCTs) methodology for its interpretability and accuracy, and compared to logistic regression and state-of-the-art ML methods (Random Forests, Gradient Boosting), reporting their area under the curve (AUC or c-statistic) for both training and testing data sets. Results: Optimal classification trees achieve outstanding performance across all three models (mortality AUC = 0.86, prolonged MVST AUC = 0.85, prolonged LOS AUC = 0.82), while being intuitively interpretable. The most significant predictors of mortality are procedure, age, and weight, followed by days since previous admission and any general preoperative patient risk factors. Conclusions: The nonlinear ML-based models of OCTs are intuitively interpretable and provide superior predictive power. The associated risk calculator allows easy, accurate, and understandable estimation of individual patient risks, in the theoretical framework of the average performance of all centers represented in the database. This methodology has the potential to facilitate decision-making and resource optimization in CHS, enabling total quality management and precise benchmarking initiatives.NOVA Medical School|Faculdade de Ciências Médicas (NMS|FCM)RUNBertsimas, DimitrisZhuo, DaisyDunn, JackLevine, JordanZuccarelli, EugenioSmyrnakis, NikosTobota, ZdzislawMaruszewski, BohdanFragata, JoseSarris, George E.2023-03-14T22:44:07Z2021-072021-07-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article8application/pdfhttp://hdl.handle.net/10362/150568eng2150-1351PURE: 55671050https://doi.org/10.1177/21501351211007106info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-03-11T05:32:35Zoai:run.unl.pt:10362/150568Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T03:54:11.401834Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Adverse Outcomes Prediction for Congenital Heart Surgery A Machine Learning Approach |
title |
Adverse Outcomes Prediction for Congenital Heart Surgery |
spellingShingle |
Adverse Outcomes Prediction for Congenital Heart Surgery Bertsimas, Dimitris artificial intelligence congenital heart surgery outcomes statistics-risk analysis/modeling statistics-survival analysis Surgery Pediatrics, Perinatology, and Child Health Cardiology and Cardiovascular Medicine |
title_short |
Adverse Outcomes Prediction for Congenital Heart Surgery |
title_full |
Adverse Outcomes Prediction for Congenital Heart Surgery |
title_fullStr |
Adverse Outcomes Prediction for Congenital Heart Surgery |
title_full_unstemmed |
Adverse Outcomes Prediction for Congenital Heart Surgery |
title_sort |
Adverse Outcomes Prediction for Congenital Heart Surgery |
author |
Bertsimas, Dimitris |
author_facet |
Bertsimas, Dimitris Zhuo, Daisy Dunn, Jack Levine, Jordan Zuccarelli, Eugenio Smyrnakis, Nikos Tobota, Zdzislaw Maruszewski, Bohdan Fragata, Jose Sarris, George E. |
author_role |
author |
author2 |
Zhuo, Daisy Dunn, Jack Levine, Jordan Zuccarelli, Eugenio Smyrnakis, Nikos Tobota, Zdzislaw Maruszewski, Bohdan Fragata, Jose Sarris, George E. |
author2_role |
author author author author author author author author author |
dc.contributor.none.fl_str_mv |
NOVA Medical School|Faculdade de Ciências Médicas (NMS|FCM) RUN |
dc.contributor.author.fl_str_mv |
Bertsimas, Dimitris Zhuo, Daisy Dunn, Jack Levine, Jordan Zuccarelli, Eugenio Smyrnakis, Nikos Tobota, Zdzislaw Maruszewski, Bohdan Fragata, Jose Sarris, George E. |
dc.subject.por.fl_str_mv |
artificial intelligence congenital heart surgery outcomes statistics-risk analysis/modeling statistics-survival analysis Surgery Pediatrics, Perinatology, and Child Health Cardiology and Cardiovascular Medicine |
topic |
artificial intelligence congenital heart surgery outcomes statistics-risk analysis/modeling statistics-survival analysis Surgery Pediatrics, Perinatology, and Child Health Cardiology and Cardiovascular Medicine |
description |
Funding Information: The authors wish to gratefully acknowledge the contributions of all ECDB participating surgeons and centers, as the contributions of the data concerning their patients who had surgery with CHD over the years have made this study possible. The author(s) received no financial support for the research, authorship, and/or publication of this article. Publisher Copyright: © The Author(s) 2021. |
publishDate |
2021 |
dc.date.none.fl_str_mv |
2021-07 2021-07-01T00:00:00Z 2023-03-14T22:44:07Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10362/150568 |
url |
http://hdl.handle.net/10362/150568 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
2150-1351 PURE: 55671050 https://doi.org/10.1177/21501351211007106 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
8 application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799138131260211200 |