Compactness bounds in general relativity
Autor(a) principal: | |
---|---|
Data de Publicação: | 2022 |
Outros Autores: | , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10773/36473 |
Resumo: | A foundational theorem due to Buchdahl states that, within General Relativity (GR), the maximum compactness $\mathcal{C}\equiv GM/(Rc^2)$ of a static, spherically symmetric, perfect fluid object of mass $M$ and radius $R$ is $\mathcal{C}=4/9$. As a corollary, there exists a compactness gap between perfect fluid stars and black holes (where $\mathcal{C}=1/2$). Here we generalize Buchdahl's result by introducing the most general equation of state for elastic matter with constant longitudinal wave speeds and apply it to compute the maximum compactness of regular, self-gravitating objects in GR. We show that: (i) the maximum compactness grows monotonically with the longitudinal wave speed; (ii) elastic matter can exceed Buchdahl's bound and reach the black hole compactness $\mathcal{C}=1/2$ continuously; (iii) however, imposing subluminal wave propagation lowers the maximum compactness bound to $\mathcal{C}\approx0.462$, which we conjecture to be the maximum compactness of \emph{any} static elastic object satisfying causality; (iv) imposing also radial stability further decreases the maximum compactness to $\mathcal{C}\approx 0.389$. Therefore, although anisotropies are often invoked as a mechanism for supporting horizonless ultracompact objects, we argue that the black hole compactness cannot be reached with physically reasonable matter within GR and that true black hole mimickers require either exotic matter or beyond-GR effects. |
id |
RCAP_92fda8af605833d525dc3bda58d3fe17 |
---|---|
oai_identifier_str |
oai:ria.ua.pt:10773/36473 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Compactness bounds in general relativityBuchdahlBlack holesGeneral relativityCompactnessElasticityA foundational theorem due to Buchdahl states that, within General Relativity (GR), the maximum compactness $\mathcal{C}\equiv GM/(Rc^2)$ of a static, spherically symmetric, perfect fluid object of mass $M$ and radius $R$ is $\mathcal{C}=4/9$. As a corollary, there exists a compactness gap between perfect fluid stars and black holes (where $\mathcal{C}=1/2$). Here we generalize Buchdahl's result by introducing the most general equation of state for elastic matter with constant longitudinal wave speeds and apply it to compute the maximum compactness of regular, self-gravitating objects in GR. We show that: (i) the maximum compactness grows monotonically with the longitudinal wave speed; (ii) elastic matter can exceed Buchdahl's bound and reach the black hole compactness $\mathcal{C}=1/2$ continuously; (iii) however, imposing subluminal wave propagation lowers the maximum compactness bound to $\mathcal{C}\approx0.462$, which we conjecture to be the maximum compactness of \emph{any} static elastic object satisfying causality; (iv) imposing also radial stability further decreases the maximum compactness to $\mathcal{C}\approx 0.389$. Therefore, although anisotropies are often invoked as a mechanism for supporting horizonless ultracompact objects, we argue that the black hole compactness cannot be reached with physically reasonable matter within GR and that true black hole mimickers require either exotic matter or beyond-GR effects.American Physical Society2023-03-06T13:33:37Z2022-08-15T00:00:00Z2022-08-15info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10773/36473eng2470-001010.1103/PhysRevD.106.L041502Alho, ArturNatário, JoséPani, PaoloRaposo, Guilhermeinfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-02-22T12:08:52Zoai:ria.ua.pt:10773/36473Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T03:06:42.473537Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Compactness bounds in general relativity |
title |
Compactness bounds in general relativity |
spellingShingle |
Compactness bounds in general relativity Alho, Artur Buchdahl Black holes General relativity Compactness Elasticity |
title_short |
Compactness bounds in general relativity |
title_full |
Compactness bounds in general relativity |
title_fullStr |
Compactness bounds in general relativity |
title_full_unstemmed |
Compactness bounds in general relativity |
title_sort |
Compactness bounds in general relativity |
author |
Alho, Artur |
author_facet |
Alho, Artur Natário, José Pani, Paolo Raposo, Guilherme |
author_role |
author |
author2 |
Natário, José Pani, Paolo Raposo, Guilherme |
author2_role |
author author author |
dc.contributor.author.fl_str_mv |
Alho, Artur Natário, José Pani, Paolo Raposo, Guilherme |
dc.subject.por.fl_str_mv |
Buchdahl Black holes General relativity Compactness Elasticity |
topic |
Buchdahl Black holes General relativity Compactness Elasticity |
description |
A foundational theorem due to Buchdahl states that, within General Relativity (GR), the maximum compactness $\mathcal{C}\equiv GM/(Rc^2)$ of a static, spherically symmetric, perfect fluid object of mass $M$ and radius $R$ is $\mathcal{C}=4/9$. As a corollary, there exists a compactness gap between perfect fluid stars and black holes (where $\mathcal{C}=1/2$). Here we generalize Buchdahl's result by introducing the most general equation of state for elastic matter with constant longitudinal wave speeds and apply it to compute the maximum compactness of regular, self-gravitating objects in GR. We show that: (i) the maximum compactness grows monotonically with the longitudinal wave speed; (ii) elastic matter can exceed Buchdahl's bound and reach the black hole compactness $\mathcal{C}=1/2$ continuously; (iii) however, imposing subluminal wave propagation lowers the maximum compactness bound to $\mathcal{C}\approx0.462$, which we conjecture to be the maximum compactness of \emph{any} static elastic object satisfying causality; (iv) imposing also radial stability further decreases the maximum compactness to $\mathcal{C}\approx 0.389$. Therefore, although anisotropies are often invoked as a mechanism for supporting horizonless ultracompact objects, we argue that the black hole compactness cannot be reached with physically reasonable matter within GR and that true black hole mimickers require either exotic matter or beyond-GR effects. |
publishDate |
2022 |
dc.date.none.fl_str_mv |
2022-08-15T00:00:00Z 2022-08-15 2023-03-06T13:33:37Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10773/36473 |
url |
http://hdl.handle.net/10773/36473 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
2470-0010 10.1103/PhysRevD.106.L041502 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
American Physical Society |
publisher.none.fl_str_mv |
American Physical Society |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799137722504314880 |