Compactness bounds in general relativity

Detalhes bibliográficos
Autor(a) principal: Alho, Artur
Data de Publicação: 2022
Outros Autores: Natário, José, Pani, Paolo, Raposo, Guilherme
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10773/36473
Resumo: A foundational theorem due to Buchdahl states that, within General Relativity (GR), the maximum compactness $\mathcal{C}\equiv GM/(Rc^2)$ of a static, spherically symmetric, perfect fluid object of mass $M$ and radius $R$ is $\mathcal{C}=4/9$. As a corollary, there exists a compactness gap between perfect fluid stars and black holes (where $\mathcal{C}=1/2$). Here we generalize Buchdahl's result by introducing the most general equation of state for elastic matter with constant longitudinal wave speeds and apply it to compute the maximum compactness of regular, self-gravitating objects in GR. We show that: (i) the maximum compactness grows monotonically with the longitudinal wave speed; (ii) elastic matter can exceed Buchdahl's bound and reach the black hole compactness $\mathcal{C}=1/2$ continuously; (iii) however, imposing subluminal wave propagation lowers the maximum compactness bound to $\mathcal{C}\approx0.462$, which we conjecture to be the maximum compactness of \emph{any} static elastic object satisfying causality; (iv) imposing also radial stability further decreases the maximum compactness to $\mathcal{C}\approx 0.389$. Therefore, although anisotropies are often invoked as a mechanism for supporting horizonless ultracompact objects, we argue that the black hole compactness cannot be reached with physically reasonable matter within GR and that true black hole mimickers require either exotic matter or beyond-GR effects.
id RCAP_92fda8af605833d525dc3bda58d3fe17
oai_identifier_str oai:ria.ua.pt:10773/36473
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Compactness bounds in general relativityBuchdahlBlack holesGeneral relativityCompactnessElasticityA foundational theorem due to Buchdahl states that, within General Relativity (GR), the maximum compactness $\mathcal{C}\equiv GM/(Rc^2)$ of a static, spherically symmetric, perfect fluid object of mass $M$ and radius $R$ is $\mathcal{C}=4/9$. As a corollary, there exists a compactness gap between perfect fluid stars and black holes (where $\mathcal{C}=1/2$). Here we generalize Buchdahl's result by introducing the most general equation of state for elastic matter with constant longitudinal wave speeds and apply it to compute the maximum compactness of regular, self-gravitating objects in GR. We show that: (i) the maximum compactness grows monotonically with the longitudinal wave speed; (ii) elastic matter can exceed Buchdahl's bound and reach the black hole compactness $\mathcal{C}=1/2$ continuously; (iii) however, imposing subluminal wave propagation lowers the maximum compactness bound to $\mathcal{C}\approx0.462$, which we conjecture to be the maximum compactness of \emph{any} static elastic object satisfying causality; (iv) imposing also radial stability further decreases the maximum compactness to $\mathcal{C}\approx 0.389$. Therefore, although anisotropies are often invoked as a mechanism for supporting horizonless ultracompact objects, we argue that the black hole compactness cannot be reached with physically reasonable matter within GR and that true black hole mimickers require either exotic matter or beyond-GR effects.American Physical Society2023-03-06T13:33:37Z2022-08-15T00:00:00Z2022-08-15info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10773/36473eng2470-001010.1103/PhysRevD.106.L041502Alho, ArturNatário, JoséPani, PaoloRaposo, Guilhermeinfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-02-22T12:08:52Zoai:ria.ua.pt:10773/36473Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T03:06:42.473537Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Compactness bounds in general relativity
title Compactness bounds in general relativity
spellingShingle Compactness bounds in general relativity
Alho, Artur
Buchdahl
Black holes
General relativity
Compactness
Elasticity
title_short Compactness bounds in general relativity
title_full Compactness bounds in general relativity
title_fullStr Compactness bounds in general relativity
title_full_unstemmed Compactness bounds in general relativity
title_sort Compactness bounds in general relativity
author Alho, Artur
author_facet Alho, Artur
Natário, José
Pani, Paolo
Raposo, Guilherme
author_role author
author2 Natário, José
Pani, Paolo
Raposo, Guilherme
author2_role author
author
author
dc.contributor.author.fl_str_mv Alho, Artur
Natário, José
Pani, Paolo
Raposo, Guilherme
dc.subject.por.fl_str_mv Buchdahl
Black holes
General relativity
Compactness
Elasticity
topic Buchdahl
Black holes
General relativity
Compactness
Elasticity
description A foundational theorem due to Buchdahl states that, within General Relativity (GR), the maximum compactness $\mathcal{C}\equiv GM/(Rc^2)$ of a static, spherically symmetric, perfect fluid object of mass $M$ and radius $R$ is $\mathcal{C}=4/9$. As a corollary, there exists a compactness gap between perfect fluid stars and black holes (where $\mathcal{C}=1/2$). Here we generalize Buchdahl's result by introducing the most general equation of state for elastic matter with constant longitudinal wave speeds and apply it to compute the maximum compactness of regular, self-gravitating objects in GR. We show that: (i) the maximum compactness grows monotonically with the longitudinal wave speed; (ii) elastic matter can exceed Buchdahl's bound and reach the black hole compactness $\mathcal{C}=1/2$ continuously; (iii) however, imposing subluminal wave propagation lowers the maximum compactness bound to $\mathcal{C}\approx0.462$, which we conjecture to be the maximum compactness of \emph{any} static elastic object satisfying causality; (iv) imposing also radial stability further decreases the maximum compactness to $\mathcal{C}\approx 0.389$. Therefore, although anisotropies are often invoked as a mechanism for supporting horizonless ultracompact objects, we argue that the black hole compactness cannot be reached with physically reasonable matter within GR and that true black hole mimickers require either exotic matter or beyond-GR effects.
publishDate 2022
dc.date.none.fl_str_mv 2022-08-15T00:00:00Z
2022-08-15
2023-03-06T13:33:37Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10773/36473
url http://hdl.handle.net/10773/36473
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 2470-0010
10.1103/PhysRevD.106.L041502
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv American Physical Society
publisher.none.fl_str_mv American Physical Society
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799137722504314880