Charged black holes in Einsteinian cubic gravity and nonuniqueness
Autor(a) principal: | |
---|---|
Data de Publicação: | 2020 |
Outros Autores: | |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10071/20617 |
Resumo: | Black holes are the simplest objects in the Universe. They correspond to extreme deformations of spacetime geometry and can exist even devoid of matter. In general relativity, (electro)vacuum black holes are uniquely determined by their mass, charge, and angular momentum. This feature follows from a uniqueness theorem, which can be evaded if one considers higher dimensions or matter fields coupled to gravity. Here we find that Einsteinian cubic gravity, a well-motivated modification of Einstein gravity that includes third-order curvature corrections in accordance with low-energy effective theory expectations, admits black hole solutions with charge greater than mass, when minimally coupled to a Maxwell field. Moreover, we find that, in this regime, there can be two asymptotically flat black holes with the same charge and mass, posing the first example of vacuum black hole nonuniqueness in four dimensions that is free from pathologies. Examination of these black hole’s thermodynamics reveals that when two branches coexist only the larger black hole is thermodynamically stable, while the smaller branch has negative specific heat. Einsteinian cubic gravity unveils two further surprising features. The charged black holes do not possess an inner horizon, in contrast with the usual Reissner-Nordström spacetime, thus avoiding the need to resort to strong cosmic censorship to uphold determinism. In addition to black holes, there exists a one-parameter family of naked singularity spacetimes sharing the same mass and charge as the former, but not continuously connected with them. These naked singularities exist in the under-extremal regime, being present even in pure (uncharged) Einsteinian cubic gravity. |
id |
RCAP_b815a3027ff60137e33de8228a6a01f5 |
---|---|
oai_identifier_str |
oai:repositorio.iscte-iul.pt:10071/20617 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Charged black holes in Einsteinian cubic gravity and nonuniquenessGeneral relativityClassical black holesAlternative gravity theoriesQuantum aspects of black holesQuantum gravityBlack holes are the simplest objects in the Universe. They correspond to extreme deformations of spacetime geometry and can exist even devoid of matter. In general relativity, (electro)vacuum black holes are uniquely determined by their mass, charge, and angular momentum. This feature follows from a uniqueness theorem, which can be evaded if one considers higher dimensions or matter fields coupled to gravity. Here we find that Einsteinian cubic gravity, a well-motivated modification of Einstein gravity that includes third-order curvature corrections in accordance with low-energy effective theory expectations, admits black hole solutions with charge greater than mass, when minimally coupled to a Maxwell field. Moreover, we find that, in this regime, there can be two asymptotically flat black holes with the same charge and mass, posing the first example of vacuum black hole nonuniqueness in four dimensions that is free from pathologies. Examination of these black hole’s thermodynamics reveals that when two branches coexist only the larger black hole is thermodynamically stable, while the smaller branch has negative specific heat. Einsteinian cubic gravity unveils two further surprising features. The charged black holes do not possess an inner horizon, in contrast with the usual Reissner-Nordström spacetime, thus avoiding the need to resort to strong cosmic censorship to uphold determinism. In addition to black holes, there exists a one-parameter family of naked singularity spacetimes sharing the same mass and charge as the former, but not continuously connected with them. These naked singularities exist in the under-extremal regime, being present even in pure (uncharged) Einsteinian cubic gravity.American Physical Society2020-07-20T16:11:04Z2020-01-01T00:00:00Z20202020-07-20T17:08:55Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10071/20617eng2470-001010.1103/PhysRevD.102.024035Frassino, A. M.Rocha, J. V.info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-11-09T17:42:33Zoai:repositorio.iscte-iul.pt:10071/20617Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T22:19:55.729608Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Charged black holes in Einsteinian cubic gravity and nonuniqueness |
title |
Charged black holes in Einsteinian cubic gravity and nonuniqueness |
spellingShingle |
Charged black holes in Einsteinian cubic gravity and nonuniqueness Frassino, A. M. General relativity Classical black holes Alternative gravity theories Quantum aspects of black holes Quantum gravity |
title_short |
Charged black holes in Einsteinian cubic gravity and nonuniqueness |
title_full |
Charged black holes in Einsteinian cubic gravity and nonuniqueness |
title_fullStr |
Charged black holes in Einsteinian cubic gravity and nonuniqueness |
title_full_unstemmed |
Charged black holes in Einsteinian cubic gravity and nonuniqueness |
title_sort |
Charged black holes in Einsteinian cubic gravity and nonuniqueness |
author |
Frassino, A. M. |
author_facet |
Frassino, A. M. Rocha, J. V. |
author_role |
author |
author2 |
Rocha, J. V. |
author2_role |
author |
dc.contributor.author.fl_str_mv |
Frassino, A. M. Rocha, J. V. |
dc.subject.por.fl_str_mv |
General relativity Classical black holes Alternative gravity theories Quantum aspects of black holes Quantum gravity |
topic |
General relativity Classical black holes Alternative gravity theories Quantum aspects of black holes Quantum gravity |
description |
Black holes are the simplest objects in the Universe. They correspond to extreme deformations of spacetime geometry and can exist even devoid of matter. In general relativity, (electro)vacuum black holes are uniquely determined by their mass, charge, and angular momentum. This feature follows from a uniqueness theorem, which can be evaded if one considers higher dimensions or matter fields coupled to gravity. Here we find that Einsteinian cubic gravity, a well-motivated modification of Einstein gravity that includes third-order curvature corrections in accordance with low-energy effective theory expectations, admits black hole solutions with charge greater than mass, when minimally coupled to a Maxwell field. Moreover, we find that, in this regime, there can be two asymptotically flat black holes with the same charge and mass, posing the first example of vacuum black hole nonuniqueness in four dimensions that is free from pathologies. Examination of these black hole’s thermodynamics reveals that when two branches coexist only the larger black hole is thermodynamically stable, while the smaller branch has negative specific heat. Einsteinian cubic gravity unveils two further surprising features. The charged black holes do not possess an inner horizon, in contrast with the usual Reissner-Nordström spacetime, thus avoiding the need to resort to strong cosmic censorship to uphold determinism. In addition to black holes, there exists a one-parameter family of naked singularity spacetimes sharing the same mass and charge as the former, but not continuously connected with them. These naked singularities exist in the under-extremal regime, being present even in pure (uncharged) Einsteinian cubic gravity. |
publishDate |
2020 |
dc.date.none.fl_str_mv |
2020-07-20T16:11:04Z 2020-01-01T00:00:00Z 2020 2020-07-20T17:08:55Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10071/20617 |
url |
http://hdl.handle.net/10071/20617 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
2470-0010 10.1103/PhysRevD.102.024035 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
American Physical Society |
publisher.none.fl_str_mv |
American Physical Society |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799134759461322752 |