Linguistic evaluation of support verb constructions by OpenLogos and google translate
Autor(a) principal: | |
---|---|
Data de Publicação: | 2014 |
Outros Autores: | , , , , , , |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10071/25681 |
Resumo: | This paper presents a systematic human evaluation of translations of English support verb constructions produced by a rule-based machine translation (RBMT) system (OpenLogos) and a statistical machine translation (SMT) system (Google Translate) for five languages: French, German, Italian, Portuguese and Spanish. We classify support verb constructions by means of their syntactic structure and semantic behavior and present a qualitative analysis of their translation errors. The study aims to verify how machine translation (MT) systems translate fine-grained linguistic phenomena, and how well-equipped they are to produce high-quality translation. Another goal of the linguistically motivated quality analysis of SVC raw output is to reinforce the need for better system hybridization, which leverages the strengths of RBMT to the benefit of SMT, especially in improving the translation of multiword units. Taking multiword units into account, we propose an effective method to achieve MT hybridization based on the integration of semantico-syntactic knowledge into SMT. |
id |
RCAP_9301ac5c3ec66848fa99b75cb8bdacd2 |
---|---|
oai_identifier_str |
oai:repositorio.iscte-iul.pt:10071/25681 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Linguistic evaluation of support verb constructions by OpenLogos and google translateMachine translationMT evaluationSupport verb constructionsMultiword unitsSemantico-syntactic knowledgeMT hybridizationThis paper presents a systematic human evaluation of translations of English support verb constructions produced by a rule-based machine translation (RBMT) system (OpenLogos) and a statistical machine translation (SMT) system (Google Translate) for five languages: French, German, Italian, Portuguese and Spanish. We classify support verb constructions by means of their syntactic structure and semantic behavior and present a qualitative analysis of their translation errors. The study aims to verify how machine translation (MT) systems translate fine-grained linguistic phenomena, and how well-equipped they are to produce high-quality translation. Another goal of the linguistically motivated quality analysis of SVC raw output is to reinforce the need for better system hybridization, which leverages the strengths of RBMT to the benefit of SMT, especially in improving the translation of multiword units. Taking multiword units into account, we propose an effective method to achieve MT hybridization based on the integration of semantico-syntactic knowledge into SMT.European Language Resources Association (ELRA)2022-06-22T08:50:25Z2014-01-01T00:00:00Z20142022-06-22T09:49:48Zconference objectinfo:eu-repo/semantics/publishedVersionapplication/pdfhttp://hdl.handle.net/10071/25681eng978-2-9517408-8-4Barreiro, A.Monti, J.Orliac, B.Preuß, S.Arrieta, K.Ling, W.Batista, F.Trancoso, I.info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-07-07T03:10:38Zoai:repositorio.iscte-iul.pt:10071/25681Portal AgregadorONGhttps://www.rcaap.pt/oai/openairemluisa.alvim@gmail.comopendoar:71602024-07-07T03:10:38Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Linguistic evaluation of support verb constructions by OpenLogos and google translate |
title |
Linguistic evaluation of support verb constructions by OpenLogos and google translate |
spellingShingle |
Linguistic evaluation of support verb constructions by OpenLogos and google translate Barreiro, A. Machine translation MT evaluation Support verb constructions Multiword units Semantico-syntactic knowledge MT hybridization |
title_short |
Linguistic evaluation of support verb constructions by OpenLogos and google translate |
title_full |
Linguistic evaluation of support verb constructions by OpenLogos and google translate |
title_fullStr |
Linguistic evaluation of support verb constructions by OpenLogos and google translate |
title_full_unstemmed |
Linguistic evaluation of support verb constructions by OpenLogos and google translate |
title_sort |
Linguistic evaluation of support verb constructions by OpenLogos and google translate |
author |
Barreiro, A. |
author_facet |
Barreiro, A. Monti, J. Orliac, B. Preuß, S. Arrieta, K. Ling, W. Batista, F. Trancoso, I. |
author_role |
author |
author2 |
Monti, J. Orliac, B. Preuß, S. Arrieta, K. Ling, W. Batista, F. Trancoso, I. |
author2_role |
author author author author author author author |
dc.contributor.author.fl_str_mv |
Barreiro, A. Monti, J. Orliac, B. Preuß, S. Arrieta, K. Ling, W. Batista, F. Trancoso, I. |
dc.subject.por.fl_str_mv |
Machine translation MT evaluation Support verb constructions Multiword units Semantico-syntactic knowledge MT hybridization |
topic |
Machine translation MT evaluation Support verb constructions Multiword units Semantico-syntactic knowledge MT hybridization |
description |
This paper presents a systematic human evaluation of translations of English support verb constructions produced by a rule-based machine translation (RBMT) system (OpenLogos) and a statistical machine translation (SMT) system (Google Translate) for five languages: French, German, Italian, Portuguese and Spanish. We classify support verb constructions by means of their syntactic structure and semantic behavior and present a qualitative analysis of their translation errors. The study aims to verify how machine translation (MT) systems translate fine-grained linguistic phenomena, and how well-equipped they are to produce high-quality translation. Another goal of the linguistically motivated quality analysis of SVC raw output is to reinforce the need for better system hybridization, which leverages the strengths of RBMT to the benefit of SMT, especially in improving the translation of multiword units. Taking multiword units into account, we propose an effective method to achieve MT hybridization based on the integration of semantico-syntactic knowledge into SMT. |
publishDate |
2014 |
dc.date.none.fl_str_mv |
2014-01-01T00:00:00Z 2014 2022-06-22T08:50:25Z 2022-06-22T09:49:48Z |
dc.type.driver.fl_str_mv |
conference object |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10071/25681 |
url |
http://hdl.handle.net/10071/25681 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
978-2-9517408-8-4 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
European Language Resources Association (ELRA) |
publisher.none.fl_str_mv |
European Language Resources Association (ELRA) |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
mluisa.alvim@gmail.com |
_version_ |
1817546410839506944 |