Estimating Effective Slowdown of Tasks in Energy-Aware Clouds
Autor(a) principal: | |
---|---|
Data de Publicação: | 2014 |
Outros Autores: | |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10400.22/5464 |
Resumo: | Consolidation consists in scheduling multiple virtual machines onto fewer servers in order to improve resource utilization and to reduce operational costs due to power consumption. However, virtualization technologies do not offer performance isolation, causing applications’ slowdown. In this work, we propose a performance enforcing mechanism, composed of a slowdown estimator, and a interference- and power-aware scheduling algorithm. The slowdown estimator determines, based on noisy slowdown data samples obtained from state-of-the-art slowdown meters, if tasks will complete within their deadlines, invoking the scheduling algorithm if needed. When invoked, the scheduling algorithm builds performance and power aware virtual clusters to successfully execute the tasks. We conduct simulations injecting synthetic jobs which characteristics follow the last version of the Google Cloud tracelogs. The results indicate that our strategy can be efficiently integrated with state-of-the-art slowdown meters to fulfil contracted SLAs in real-world environments, while reducing operational costs in about 12%. |
id |
RCAP_94286fe538ddc082a6f890de756e3bea |
---|---|
oai_identifier_str |
oai:recipp.ipp.pt:10400.22/5464 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Estimating Effective Slowdown of Tasks in Energy-Aware CloudsKalman filtervirtualizationenergy-efficiencyquality of serviceperformance interferenceConsolidation consists in scheduling multiple virtual machines onto fewer servers in order to improve resource utilization and to reduce operational costs due to power consumption. However, virtualization technologies do not offer performance isolation, causing applications’ slowdown. In this work, we propose a performance enforcing mechanism, composed of a slowdown estimator, and a interference- and power-aware scheduling algorithm. The slowdown estimator determines, based on noisy slowdown data samples obtained from state-of-the-art slowdown meters, if tasks will complete within their deadlines, invoking the scheduling algorithm if needed. When invoked, the scheduling algorithm builds performance and power aware virtual clusters to successfully execute the tasks. We conduct simulations injecting synthetic jobs which characteristics follow the last version of the Google Cloud tracelogs. The results indicate that our strategy can be efficiently integrated with state-of-the-art slowdown meters to fulfil contracted SLAs in real-world environments, while reducing operational costs in about 12%.IEEERepositório Científico do Instituto Politécnico do PortoSampaio, AltinoBarbosa, Jorge2015-01-22T11:37:04Z2014-08-262014-08-26T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10400.22/5464eng10400.22/5464info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-03-13T12:44:50Zoai:recipp.ipp.pt:10400.22/5464Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T17:25:35.182957Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Estimating Effective Slowdown of Tasks in Energy-Aware Clouds |
title |
Estimating Effective Slowdown of Tasks in Energy-Aware Clouds |
spellingShingle |
Estimating Effective Slowdown of Tasks in Energy-Aware Clouds Sampaio, Altino Kalman filter virtualization energy-efficiency quality of service performance interference |
title_short |
Estimating Effective Slowdown of Tasks in Energy-Aware Clouds |
title_full |
Estimating Effective Slowdown of Tasks in Energy-Aware Clouds |
title_fullStr |
Estimating Effective Slowdown of Tasks in Energy-Aware Clouds |
title_full_unstemmed |
Estimating Effective Slowdown of Tasks in Energy-Aware Clouds |
title_sort |
Estimating Effective Slowdown of Tasks in Energy-Aware Clouds |
author |
Sampaio, Altino |
author_facet |
Sampaio, Altino Barbosa, Jorge |
author_role |
author |
author2 |
Barbosa, Jorge |
author2_role |
author |
dc.contributor.none.fl_str_mv |
Repositório Científico do Instituto Politécnico do Porto |
dc.contributor.author.fl_str_mv |
Sampaio, Altino Barbosa, Jorge |
dc.subject.por.fl_str_mv |
Kalman filter virtualization energy-efficiency quality of service performance interference |
topic |
Kalman filter virtualization energy-efficiency quality of service performance interference |
description |
Consolidation consists in scheduling multiple virtual machines onto fewer servers in order to improve resource utilization and to reduce operational costs due to power consumption. However, virtualization technologies do not offer performance isolation, causing applications’ slowdown. In this work, we propose a performance enforcing mechanism, composed of a slowdown estimator, and a interference- and power-aware scheduling algorithm. The slowdown estimator determines, based on noisy slowdown data samples obtained from state-of-the-art slowdown meters, if tasks will complete within their deadlines, invoking the scheduling algorithm if needed. When invoked, the scheduling algorithm builds performance and power aware virtual clusters to successfully execute the tasks. We conduct simulations injecting synthetic jobs which characteristics follow the last version of the Google Cloud tracelogs. The results indicate that our strategy can be efficiently integrated with state-of-the-art slowdown meters to fulfil contracted SLAs in real-world environments, while reducing operational costs in about 12%. |
publishDate |
2014 |
dc.date.none.fl_str_mv |
2014-08-26 2014-08-26T00:00:00Z 2015-01-22T11:37:04Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10400.22/5464 |
url |
http://hdl.handle.net/10400.22/5464 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
10400.22/5464 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
IEEE |
publisher.none.fl_str_mv |
IEEE |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799131348806402048 |