Estimating Effective Slowdown of Tasks in Energy-Aware Clouds

Detalhes bibliográficos
Autor(a) principal: Sampaio, Altino
Data de Publicação: 2014
Outros Autores: Barbosa, Jorge
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10400.22/5464
Resumo: Consolidation consists in scheduling multiple virtual machines onto fewer servers in order to improve resource utilization and to reduce operational costs due to power consumption. However, virtualization technologies do not offer performance isolation, causing applications’ slowdown. In this work, we propose a performance enforcing mechanism, composed of a slowdown estimator, and a interference- and power-aware scheduling algorithm. The slowdown estimator determines, based on noisy slowdown data samples obtained from state-of-the-art slowdown meters, if tasks will complete within their deadlines, invoking the scheduling algorithm if needed. When invoked, the scheduling algorithm builds performance and power aware virtual clusters to successfully execute the tasks. We conduct simulations injecting synthetic jobs which characteristics follow the last version of the Google Cloud tracelogs. The results indicate that our strategy can be efficiently integrated with state-of-the-art slowdown meters to fulfil contracted SLAs in real-world environments, while reducing operational costs in about 12%.
id RCAP_94286fe538ddc082a6f890de756e3bea
oai_identifier_str oai:recipp.ipp.pt:10400.22/5464
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Estimating Effective Slowdown of Tasks in Energy-Aware CloudsKalman filtervirtualizationenergy-efficiencyquality of serviceperformance interferenceConsolidation consists in scheduling multiple virtual machines onto fewer servers in order to improve resource utilization and to reduce operational costs due to power consumption. However, virtualization technologies do not offer performance isolation, causing applications’ slowdown. In this work, we propose a performance enforcing mechanism, composed of a slowdown estimator, and a interference- and power-aware scheduling algorithm. The slowdown estimator determines, based on noisy slowdown data samples obtained from state-of-the-art slowdown meters, if tasks will complete within their deadlines, invoking the scheduling algorithm if needed. When invoked, the scheduling algorithm builds performance and power aware virtual clusters to successfully execute the tasks. We conduct simulations injecting synthetic jobs which characteristics follow the last version of the Google Cloud tracelogs. The results indicate that our strategy can be efficiently integrated with state-of-the-art slowdown meters to fulfil contracted SLAs in real-world environments, while reducing operational costs in about 12%.IEEERepositório Científico do Instituto Politécnico do PortoSampaio, AltinoBarbosa, Jorge2015-01-22T11:37:04Z2014-08-262014-08-26T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10400.22/5464eng10400.22/5464info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-03-13T12:44:50Zoai:recipp.ipp.pt:10400.22/5464Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T17:25:35.182957Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Estimating Effective Slowdown of Tasks in Energy-Aware Clouds
title Estimating Effective Slowdown of Tasks in Energy-Aware Clouds
spellingShingle Estimating Effective Slowdown of Tasks in Energy-Aware Clouds
Sampaio, Altino
Kalman filter
virtualization
energy-efficiency
quality of service
performance interference
title_short Estimating Effective Slowdown of Tasks in Energy-Aware Clouds
title_full Estimating Effective Slowdown of Tasks in Energy-Aware Clouds
title_fullStr Estimating Effective Slowdown of Tasks in Energy-Aware Clouds
title_full_unstemmed Estimating Effective Slowdown of Tasks in Energy-Aware Clouds
title_sort Estimating Effective Slowdown of Tasks in Energy-Aware Clouds
author Sampaio, Altino
author_facet Sampaio, Altino
Barbosa, Jorge
author_role author
author2 Barbosa, Jorge
author2_role author
dc.contributor.none.fl_str_mv Repositório Científico do Instituto Politécnico do Porto
dc.contributor.author.fl_str_mv Sampaio, Altino
Barbosa, Jorge
dc.subject.por.fl_str_mv Kalman filter
virtualization
energy-efficiency
quality of service
performance interference
topic Kalman filter
virtualization
energy-efficiency
quality of service
performance interference
description Consolidation consists in scheduling multiple virtual machines onto fewer servers in order to improve resource utilization and to reduce operational costs due to power consumption. However, virtualization technologies do not offer performance isolation, causing applications’ slowdown. In this work, we propose a performance enforcing mechanism, composed of a slowdown estimator, and a interference- and power-aware scheduling algorithm. The slowdown estimator determines, based on noisy slowdown data samples obtained from state-of-the-art slowdown meters, if tasks will complete within their deadlines, invoking the scheduling algorithm if needed. When invoked, the scheduling algorithm builds performance and power aware virtual clusters to successfully execute the tasks. We conduct simulations injecting synthetic jobs which characteristics follow the last version of the Google Cloud tracelogs. The results indicate that our strategy can be efficiently integrated with state-of-the-art slowdown meters to fulfil contracted SLAs in real-world environments, while reducing operational costs in about 12%.
publishDate 2014
dc.date.none.fl_str_mv 2014-08-26
2014-08-26T00:00:00Z
2015-01-22T11:37:04Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10400.22/5464
url http://hdl.handle.net/10400.22/5464
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 10400.22/5464
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv IEEE
publisher.none.fl_str_mv IEEE
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799131348806402048