Comparative Study of DC and RF Sputtered MoSe2 Coatings Containing Carbon—An Approach to Optimize Stoichiometry, Microstructure, Crystallinity and Hardness
Autor(a) principal: | |
---|---|
Data de Publicação: | 2020 |
Outros Autores: | , , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10316/105863 https://doi.org/10.3390/coatings10020133 |
Resumo: | Low stoichiometry, low crystallinity, low hardness and incongruencies involving the reported microstructure have limited the applicability of TMD-C (Transition metal dichalcogenides with carbon) solid-lubricant coatings. In this work, optimized Mo–Se–C coatings were deposited using confocal plasma magnetron sputtering to overcome the above-mentioned issues. Two di erent approaches were used; MoSe2 target powered by DC (direct current) or RF (radio frequency) magnetron sputtering. Carbon was always added by DC magnetron sputtering. Wavelength dispersive spectroscopy displayed Se/Mo stoichiometry of ~2, values higher than the literature. The Se/Mo ratio for RF-deposited coatings was lower than for their DC counterparts. Scanning electron microscopy showed that irrespective of the low carbon additions, the Mo–Se–C coatings were highly compact with no vestiges of columnar growth due to optimal bombardment of sputtered species. Application of substrate bias further improved compactness at the expense of lower Se/Mo ratio. X-ray di raction, transmission electron microscopy, and Raman spectroscopy confirmed the presence of MoSe2 crystals, and (002) basal planes. Even very low carbon additions led to an improvement of the hardness of the coatings. The work reports a comparison between RF and DC sputtering of MoSe2 coatings with carbon and provides a guideline to optimize the composition, morphology, structure, and mechanical properties. |
id |
RCAP_95207cc92ae19bbdf996563db5aaaa95 |
---|---|
oai_identifier_str |
oai:estudogeral.uc.pt:10316/105863 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Comparative Study of DC and RF Sputtered MoSe2 Coatings Containing Carbon—An Approach to Optimize Stoichiometry, Microstructure, Crystallinity and Hardnesstransition metal dichalcogenidesoptimizedstoichiometrycrystallinitymicrostructuremagnetron sputteringLow stoichiometry, low crystallinity, low hardness and incongruencies involving the reported microstructure have limited the applicability of TMD-C (Transition metal dichalcogenides with carbon) solid-lubricant coatings. In this work, optimized Mo–Se–C coatings were deposited using confocal plasma magnetron sputtering to overcome the above-mentioned issues. Two di erent approaches were used; MoSe2 target powered by DC (direct current) or RF (radio frequency) magnetron sputtering. Carbon was always added by DC magnetron sputtering. Wavelength dispersive spectroscopy displayed Se/Mo stoichiometry of ~2, values higher than the literature. The Se/Mo ratio for RF-deposited coatings was lower than for their DC counterparts. Scanning electron microscopy showed that irrespective of the low carbon additions, the Mo–Se–C coatings were highly compact with no vestiges of columnar growth due to optimal bombardment of sputtered species. Application of substrate bias further improved compactness at the expense of lower Se/Mo ratio. X-ray di raction, transmission electron microscopy, and Raman spectroscopy confirmed the presence of MoSe2 crystals, and (002) basal planes. Even very low carbon additions led to an improvement of the hardness of the coatings. The work reports a comparison between RF and DC sputtering of MoSe2 coatings with carbon and provides a guideline to optimize the composition, morphology, structure, and mechanical properties.MDPI2020info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlehttp://hdl.handle.net/10316/105863http://hdl.handle.net/10316/105863https://doi.org/10.3390/coatings10020133eng2079-6412Yaqub, Talha BinVuchkov, TodorSanguino, PedroPolcar, TomasCavaleiro, Albanoinfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-03-13T21:31:51Zoai:estudogeral.uc.pt:10316/105863Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T21:22:21.662370Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Comparative Study of DC and RF Sputtered MoSe2 Coatings Containing Carbon—An Approach to Optimize Stoichiometry, Microstructure, Crystallinity and Hardness |
title |
Comparative Study of DC and RF Sputtered MoSe2 Coatings Containing Carbon—An Approach to Optimize Stoichiometry, Microstructure, Crystallinity and Hardness |
spellingShingle |
Comparative Study of DC and RF Sputtered MoSe2 Coatings Containing Carbon—An Approach to Optimize Stoichiometry, Microstructure, Crystallinity and Hardness Yaqub, Talha Bin transition metal dichalcogenides optimized stoichiometry crystallinity microstructure magnetron sputtering |
title_short |
Comparative Study of DC and RF Sputtered MoSe2 Coatings Containing Carbon—An Approach to Optimize Stoichiometry, Microstructure, Crystallinity and Hardness |
title_full |
Comparative Study of DC and RF Sputtered MoSe2 Coatings Containing Carbon—An Approach to Optimize Stoichiometry, Microstructure, Crystallinity and Hardness |
title_fullStr |
Comparative Study of DC and RF Sputtered MoSe2 Coatings Containing Carbon—An Approach to Optimize Stoichiometry, Microstructure, Crystallinity and Hardness |
title_full_unstemmed |
Comparative Study of DC and RF Sputtered MoSe2 Coatings Containing Carbon—An Approach to Optimize Stoichiometry, Microstructure, Crystallinity and Hardness |
title_sort |
Comparative Study of DC and RF Sputtered MoSe2 Coatings Containing Carbon—An Approach to Optimize Stoichiometry, Microstructure, Crystallinity and Hardness |
author |
Yaqub, Talha Bin |
author_facet |
Yaqub, Talha Bin Vuchkov, Todor Sanguino, Pedro Polcar, Tomas Cavaleiro, Albano |
author_role |
author |
author2 |
Vuchkov, Todor Sanguino, Pedro Polcar, Tomas Cavaleiro, Albano |
author2_role |
author author author author |
dc.contributor.author.fl_str_mv |
Yaqub, Talha Bin Vuchkov, Todor Sanguino, Pedro Polcar, Tomas Cavaleiro, Albano |
dc.subject.por.fl_str_mv |
transition metal dichalcogenides optimized stoichiometry crystallinity microstructure magnetron sputtering |
topic |
transition metal dichalcogenides optimized stoichiometry crystallinity microstructure magnetron sputtering |
description |
Low stoichiometry, low crystallinity, low hardness and incongruencies involving the reported microstructure have limited the applicability of TMD-C (Transition metal dichalcogenides with carbon) solid-lubricant coatings. In this work, optimized Mo–Se–C coatings were deposited using confocal plasma magnetron sputtering to overcome the above-mentioned issues. Two di erent approaches were used; MoSe2 target powered by DC (direct current) or RF (radio frequency) magnetron sputtering. Carbon was always added by DC magnetron sputtering. Wavelength dispersive spectroscopy displayed Se/Mo stoichiometry of ~2, values higher than the literature. The Se/Mo ratio for RF-deposited coatings was lower than for their DC counterparts. Scanning electron microscopy showed that irrespective of the low carbon additions, the Mo–Se–C coatings were highly compact with no vestiges of columnar growth due to optimal bombardment of sputtered species. Application of substrate bias further improved compactness at the expense of lower Se/Mo ratio. X-ray di raction, transmission electron microscopy, and Raman spectroscopy confirmed the presence of MoSe2 crystals, and (002) basal planes. Even very low carbon additions led to an improvement of the hardness of the coatings. The work reports a comparison between RF and DC sputtering of MoSe2 coatings with carbon and provides a guideline to optimize the composition, morphology, structure, and mechanical properties. |
publishDate |
2020 |
dc.date.none.fl_str_mv |
2020 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10316/105863 http://hdl.handle.net/10316/105863 https://doi.org/10.3390/coatings10020133 |
url |
http://hdl.handle.net/10316/105863 https://doi.org/10.3390/coatings10020133 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
2079-6412 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.publisher.none.fl_str_mv |
MDPI |
publisher.none.fl_str_mv |
MDPI |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799134112906215424 |