1H NMR in Solution and Solid State Structural Study of Lanthanide(III) Cryptates

Detalhes bibliográficos
Autor(a) principal: Platas, C.
Data de Publicação: 1999
Outros Autores: Avecilla, F., Blas, A. de, Geraldes, C. F. G. C., Rodríguez-Blas, T., Adams, H., Mahía, J.
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
DOI: 10.1021/ic981314e
Texto Completo: http://hdl.handle.net/10316/10382
https://doi.org/10.1021/ic981314e
Resumo: We present here a detailed structural comparison, both in the solid state and in aqueous solution, of a complete series of lanthanide cryptate complexes of a Schiff base axial macrobicyclic ligand L of general formula [LnL][NO3]3·xH2O (Ln = La−Lu, Y); the macrobicyclic receptor L is an azacryptand N[(CH2)2NCH−R−CHN(CH2)2]3N (R = m-C6H2OH-2-Me-5). The crystal structures of the Ce, Nd, and Eu complexes, chemical formulae [CeL(NO3)](NO3)2·1.5H2O·0.5CH3CH2OH (3), [NdL(NO3)](NO3)2·3H2O (5), and [EuL(NO3)](NO3)2·H2O· CH3OH (7), as well as that of [YL(NO3)][Y(NO3)3(H2O)2EtOH](NO3)2.EtOH·CH3CN (16), have been determined by single-crystal X-ray crystallography. The four crystals crystallize in the triclinic space group P with Z = 2; a = 10.853(3) Å, b = 12.746(3) Å, c = 17.907(5) Å, α = 98.09(2)°, β = 89.99(2)°, γ = 96.34(2)°, for 3; a = 10.835(2) Å, b = 12.544(3) Å, c = 17.701(2) Å, α = 82.220(10)°, β = 89.240(10)°, γ = 84.45(2)° for 5; a = 10.896(2) Å, b = 12.566(4) Å, c = 17.688(3) Å, α = 81.23(2)°, β = 89.500(10)°, γ = 84.72(3)° for 7; and a = 12.723(2) Å, b = 14.047(3) Å, c = 16.943(2) Å, α = 66.07(2)°, β = 79.838(12)°, γ = 81.616(14)° for 16. In light of their crystal structures, it can be stated that all of them adopt very similar structures, with the nine-coordinated metal ion bound asymmetrically to seven donor atoms in the ligand cavity and also to two oxygen atoms of a bidentate nitrate anion. The macrobicycle cavity adapts to the lanthanide contraction, while preserving the pseudo-triple-helix conformation around the metal ion. The coordination geometry of the metal atom is best considered as a slightly distorted monocapped dodecahedron. The aqueous solution structures of the paramagnetic complexes were thoroughly characterized from the proton NMR LIS and LIR data, with particular attention to the changes induced by the lanthanide contraction, and agree quite well with the crystal structures of the Nd and Y complexes. The experimental Ln−donor distances decrease progressively along the lanthanide series both in the solid and solution structures, but no drastic structural changes occur. The gradual contraction and distortion of the coordination polyhedron along the series cause a variation of the crystal field parameter A2°<r2> and the hyperfine constants Ai of the lanthanides in the middle of the series, leading to “breaks” in the contact−pseudo-contact shift separation plots of the proton LIS values. However, this affects only slightly the geometric terms Gi of the protons and not at all their Rik ratios. The conformational rigidity of the five-membered chelate rings formed by the metal-bound ethylenediamino moieties of the bound cryptand increases upon lanthanide contraction. The ΔG value for the δ ↔ λ conformational interconversion process of those rings is 70 ± 3 kJ for the Y complex.
id RCAP_952b90935b51cab65979c32d227fb194
oai_identifier_str oai:estudogeral.uc.pt:10316/10382
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling 1H NMR in Solution and Solid State Structural Study of Lanthanide(III) CryptatesWe present here a detailed structural comparison, both in the solid state and in aqueous solution, of a complete series of lanthanide cryptate complexes of a Schiff base axial macrobicyclic ligand L of general formula [LnL][NO3]3·xH2O (Ln = La−Lu, Y); the macrobicyclic receptor L is an azacryptand N[(CH2)2NCH−R−CHN(CH2)2]3N (R = m-C6H2OH-2-Me-5). The crystal structures of the Ce, Nd, and Eu complexes, chemical formulae [CeL(NO3)](NO3)2·1.5H2O·0.5CH3CH2OH (3), [NdL(NO3)](NO3)2·3H2O (5), and [EuL(NO3)](NO3)2·H2O· CH3OH (7), as well as that of [YL(NO3)][Y(NO3)3(H2O)2EtOH](NO3)2.EtOH·CH3CN (16), have been determined by single-crystal X-ray crystallography. The four crystals crystallize in the triclinic space group P with Z = 2; a = 10.853(3) Å, b = 12.746(3) Å, c = 17.907(5) Å, α = 98.09(2)°, β = 89.99(2)°, γ = 96.34(2)°, for 3; a = 10.835(2) Å, b = 12.544(3) Å, c = 17.701(2) Å, α = 82.220(10)°, β = 89.240(10)°, γ = 84.45(2)° for 5; a = 10.896(2) Å, b = 12.566(4) Å, c = 17.688(3) Å, α = 81.23(2)°, β = 89.500(10)°, γ = 84.72(3)° for 7; and a = 12.723(2) Å, b = 14.047(3) Å, c = 16.943(2) Å, α = 66.07(2)°, β = 79.838(12)°, γ = 81.616(14)° for 16. In light of their crystal structures, it can be stated that all of them adopt very similar structures, with the nine-coordinated metal ion bound asymmetrically to seven donor atoms in the ligand cavity and also to two oxygen atoms of a bidentate nitrate anion. The macrobicycle cavity adapts to the lanthanide contraction, while preserving the pseudo-triple-helix conformation around the metal ion. The coordination geometry of the metal atom is best considered as a slightly distorted monocapped dodecahedron. The aqueous solution structures of the paramagnetic complexes were thoroughly characterized from the proton NMR LIS and LIR data, with particular attention to the changes induced by the lanthanide contraction, and agree quite well with the crystal structures of the Nd and Y complexes. The experimental Ln−donor distances decrease progressively along the lanthanide series both in the solid and solution structures, but no drastic structural changes occur. The gradual contraction and distortion of the coordination polyhedron along the series cause a variation of the crystal field parameter A2°<r2> and the hyperfine constants Ai of the lanthanides in the middle of the series, leading to “breaks” in the contact−pseudo-contact shift separation plots of the proton LIS values. However, this affects only slightly the geometric terms Gi of the protons and not at all their Rik ratios. The conformational rigidity of the five-membered chelate rings formed by the metal-bound ethylenediamino moieties of the bound cryptand increases upon lanthanide contraction. The ΔG value for the δ ↔ λ conformational interconversion process of those rings is 70 ± 3 kJ for the Y complex.American Chemical Society1999-06-28info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlehttp://hdl.handle.net/10316/10382http://hdl.handle.net/10316/10382https://doi.org/10.1021/ic981314eengInorganic Chemistry. 38:13 (1999) 3190-31990020-1669Platas, C.Avecilla, F.Blas, A. deGeraldes, C. F. G. C.Rodríguez-Blas, T.Adams, H.Mahía, J.info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2021-09-01T08:50:26Zoai:estudogeral.uc.pt:10316/10382Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T20:55:46.255623Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv 1H NMR in Solution and Solid State Structural Study of Lanthanide(III) Cryptates
title 1H NMR in Solution and Solid State Structural Study of Lanthanide(III) Cryptates
spellingShingle 1H NMR in Solution and Solid State Structural Study of Lanthanide(III) Cryptates
1H NMR in Solution and Solid State Structural Study of Lanthanide(III) Cryptates
Platas, C.
Platas, C.
title_short 1H NMR in Solution and Solid State Structural Study of Lanthanide(III) Cryptates
title_full 1H NMR in Solution and Solid State Structural Study of Lanthanide(III) Cryptates
title_fullStr 1H NMR in Solution and Solid State Structural Study of Lanthanide(III) Cryptates
1H NMR in Solution and Solid State Structural Study of Lanthanide(III) Cryptates
title_full_unstemmed 1H NMR in Solution and Solid State Structural Study of Lanthanide(III) Cryptates
1H NMR in Solution and Solid State Structural Study of Lanthanide(III) Cryptates
title_sort 1H NMR in Solution and Solid State Structural Study of Lanthanide(III) Cryptates
author Platas, C.
author_facet Platas, C.
Platas, C.
Avecilla, F.
Blas, A. de
Geraldes, C. F. G. C.
Rodríguez-Blas, T.
Adams, H.
Mahía, J.
Avecilla, F.
Blas, A. de
Geraldes, C. F. G. C.
Rodríguez-Blas, T.
Adams, H.
Mahía, J.
author_role author
author2 Avecilla, F.
Blas, A. de
Geraldes, C. F. G. C.
Rodríguez-Blas, T.
Adams, H.
Mahía, J.
author2_role author
author
author
author
author
author
dc.contributor.author.fl_str_mv Platas, C.
Avecilla, F.
Blas, A. de
Geraldes, C. F. G. C.
Rodríguez-Blas, T.
Adams, H.
Mahía, J.
description We present here a detailed structural comparison, both in the solid state and in aqueous solution, of a complete series of lanthanide cryptate complexes of a Schiff base axial macrobicyclic ligand L of general formula [LnL][NO3]3·xH2O (Ln = La−Lu, Y); the macrobicyclic receptor L is an azacryptand N[(CH2)2NCH−R−CHN(CH2)2]3N (R = m-C6H2OH-2-Me-5). The crystal structures of the Ce, Nd, and Eu complexes, chemical formulae [CeL(NO3)](NO3)2·1.5H2O·0.5CH3CH2OH (3), [NdL(NO3)](NO3)2·3H2O (5), and [EuL(NO3)](NO3)2·H2O· CH3OH (7), as well as that of [YL(NO3)][Y(NO3)3(H2O)2EtOH](NO3)2.EtOH·CH3CN (16), have been determined by single-crystal X-ray crystallography. The four crystals crystallize in the triclinic space group P with Z = 2; a = 10.853(3) Å, b = 12.746(3) Å, c = 17.907(5) Å, α = 98.09(2)°, β = 89.99(2)°, γ = 96.34(2)°, for 3; a = 10.835(2) Å, b = 12.544(3) Å, c = 17.701(2) Å, α = 82.220(10)°, β = 89.240(10)°, γ = 84.45(2)° for 5; a = 10.896(2) Å, b = 12.566(4) Å, c = 17.688(3) Å, α = 81.23(2)°, β = 89.500(10)°, γ = 84.72(3)° for 7; and a = 12.723(2) Å, b = 14.047(3) Å, c = 16.943(2) Å, α = 66.07(2)°, β = 79.838(12)°, γ = 81.616(14)° for 16. In light of their crystal structures, it can be stated that all of them adopt very similar structures, with the nine-coordinated metal ion bound asymmetrically to seven donor atoms in the ligand cavity and also to two oxygen atoms of a bidentate nitrate anion. The macrobicycle cavity adapts to the lanthanide contraction, while preserving the pseudo-triple-helix conformation around the metal ion. The coordination geometry of the metal atom is best considered as a slightly distorted monocapped dodecahedron. The aqueous solution structures of the paramagnetic complexes were thoroughly characterized from the proton NMR LIS and LIR data, with particular attention to the changes induced by the lanthanide contraction, and agree quite well with the crystal structures of the Nd and Y complexes. The experimental Ln−donor distances decrease progressively along the lanthanide series both in the solid and solution structures, but no drastic structural changes occur. The gradual contraction and distortion of the coordination polyhedron along the series cause a variation of the crystal field parameter A2°<r2> and the hyperfine constants Ai of the lanthanides in the middle of the series, leading to “breaks” in the contact−pseudo-contact shift separation plots of the proton LIS values. However, this affects only slightly the geometric terms Gi of the protons and not at all their Rik ratios. The conformational rigidity of the five-membered chelate rings formed by the metal-bound ethylenediamino moieties of the bound cryptand increases upon lanthanide contraction. The ΔG value for the δ ↔ λ conformational interconversion process of those rings is 70 ± 3 kJ for the Y complex.
publishDate 1999
dc.date.none.fl_str_mv 1999-06-28
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10316/10382
http://hdl.handle.net/10316/10382
https://doi.org/10.1021/ic981314e
url http://hdl.handle.net/10316/10382
https://doi.org/10.1021/ic981314e
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv Inorganic Chemistry. 38:13 (1999) 3190-3199
0020-1669
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv American Chemical Society
publisher.none.fl_str_mv American Chemical Society
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1822240672909885440
dc.identifier.doi.none.fl_str_mv 10.1021/ic981314e