Detecting a poker face

Detalhes bibliográficos
Autor(a) principal: Sousa, Lúcia Maria Bessa de
Data de Publicação: 2023
Tipo de documento: Dissertação
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10773/40041
Resumo: Neutral facial expression recognition holds significant importance in various domains and applications. This thesis presents a comprehensive study on neutral facial expression recognition, investigating different approaches, techniques, and challenges in the field. The study employs a multi-faceted methodology. Firstly, it examines the impact of datasets, data augmentation, balancing, and creating a specialized dataset by merging existing datasets on emotion recognition. It is found that data augmentation has a significant impact on the training of the model. Subsequently, the study explores the effects of various model architectures, parameters, and training techniques to identify the most effective approach. Notably, the InceptionV3 model demonstrates the best performance with an accuracy of 72%. Additionally, the investigation includes examining different preprocessing methods and their influence on the performance of the best-performing model, InceptionV3, and a simplified CNN model. The results reveal that preprocessing techniques positively impact the performance of the simpler CNN model, leading to improvements. However, it is noteworthy that the application of preprocessing methods has a negative impact on the performance of the InceptionV3 model. These findings highlight the importance of considering the specific model architecture when choosing and applying preprocessing techniques to maximize performance and optimize results. The system implemented to validate the study, showed promising results, for the best performing model, which was subsequently tested with participants, of which 75% obtained correctly classified neutral expressions.
id RCAP_957e56e7478be4f54b3b8919a5c70ccf
oai_identifier_str oai:ria.ua.pt:10773/40041
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Detecting a poker faceFace identificationEmotion analysisMachine learningComputer visionNeutral facial expression recognition holds significant importance in various domains and applications. This thesis presents a comprehensive study on neutral facial expression recognition, investigating different approaches, techniques, and challenges in the field. The study employs a multi-faceted methodology. Firstly, it examines the impact of datasets, data augmentation, balancing, and creating a specialized dataset by merging existing datasets on emotion recognition. It is found that data augmentation has a significant impact on the training of the model. Subsequently, the study explores the effects of various model architectures, parameters, and training techniques to identify the most effective approach. Notably, the InceptionV3 model demonstrates the best performance with an accuracy of 72%. Additionally, the investigation includes examining different preprocessing methods and their influence on the performance of the best-performing model, InceptionV3, and a simplified CNN model. The results reveal that preprocessing techniques positively impact the performance of the simpler CNN model, leading to improvements. However, it is noteworthy that the application of preprocessing methods has a negative impact on the performance of the InceptionV3 model. These findings highlight the importance of considering the specific model architecture when choosing and applying preprocessing techniques to maximize performance and optimize results. The system implemented to validate the study, showed promising results, for the best performing model, which was subsequently tested with participants, of which 75% obtained correctly classified neutral expressions.O reconhecimento de expressões faciais neutras tem uma importância significativa em vários domínios e aplicações. Esta tese apresenta um estudo abrangente sobre o reconhecimento de expressões faciais neutras, investigando diferentes abordagens, técnicas e desafios no campo. O estudo utiliza uma metodologia multifacetada. Em primeiro lugar, examina o impacto de conjuntos de dados, aumento de dados, equilíbrio e criação de um conjunto de dados especializado pela fusão de conjuntos de dados existentes no reconhecimento de emoções. Verifica-se que o aumento de dados tem um impacto significativo no treino do modelo. Posteriormente, o estudo explora os efeitos de diferentes arquiteturas de modelos, parâmetros e técnicas de treino para identificar a abordagem mais eficaz. Destaca-se que o modelo InceptionV3 apresenta o melhor desempenho, com uma precisão de 72%. Além disso, a investigação inclui o teste de diferentes métodos de pré-processamento e a sua influência no desempenho do modelo com o melhor desempenho, InceptionV3, e de um modelo CNN mais simples. Os resultados revelam que as técnicas de préprocessamento impactam positivamente o desempenho do modelo CNN, resultando em melhorias. No entanto, é importante destacar que a aplicação de métodos de pré-processamento tem um impacto negativo no desempenho do modelo InceptionV3. Essas descobertas evidenciam a importância de considerar a arquitetura específica do modelo ao escolher e aplicar técnicas de pré-processamento para maximizar o desempenho e otimizar os resultados. O sistema implementado para validar o estudo, demonstrou resultados promissores, para o modelo com melhor desempenho, que foi posteriormente testado com participantes, dos quais 75% obtiveram expressões neutras corretamente classificadas.2024-01-10T11:29:22Z2023-07-04T00:00:00Z2023-07-04info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10773/40041engSousa, Lúcia Maria Bessa deinfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-02-22T12:18:27Zoai:ria.ua.pt:10773/40041Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T03:10:12.400861Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Detecting a poker face
title Detecting a poker face
spellingShingle Detecting a poker face
Sousa, Lúcia Maria Bessa de
Face identification
Emotion analysis
Machine learning
Computer vision
title_short Detecting a poker face
title_full Detecting a poker face
title_fullStr Detecting a poker face
title_full_unstemmed Detecting a poker face
title_sort Detecting a poker face
author Sousa, Lúcia Maria Bessa de
author_facet Sousa, Lúcia Maria Bessa de
author_role author
dc.contributor.author.fl_str_mv Sousa, Lúcia Maria Bessa de
dc.subject.por.fl_str_mv Face identification
Emotion analysis
Machine learning
Computer vision
topic Face identification
Emotion analysis
Machine learning
Computer vision
description Neutral facial expression recognition holds significant importance in various domains and applications. This thesis presents a comprehensive study on neutral facial expression recognition, investigating different approaches, techniques, and challenges in the field. The study employs a multi-faceted methodology. Firstly, it examines the impact of datasets, data augmentation, balancing, and creating a specialized dataset by merging existing datasets on emotion recognition. It is found that data augmentation has a significant impact on the training of the model. Subsequently, the study explores the effects of various model architectures, parameters, and training techniques to identify the most effective approach. Notably, the InceptionV3 model demonstrates the best performance with an accuracy of 72%. Additionally, the investigation includes examining different preprocessing methods and their influence on the performance of the best-performing model, InceptionV3, and a simplified CNN model. The results reveal that preprocessing techniques positively impact the performance of the simpler CNN model, leading to improvements. However, it is noteworthy that the application of preprocessing methods has a negative impact on the performance of the InceptionV3 model. These findings highlight the importance of considering the specific model architecture when choosing and applying preprocessing techniques to maximize performance and optimize results. The system implemented to validate the study, showed promising results, for the best performing model, which was subsequently tested with participants, of which 75% obtained correctly classified neutral expressions.
publishDate 2023
dc.date.none.fl_str_mv 2023-07-04T00:00:00Z
2023-07-04
2024-01-10T11:29:22Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10773/40041
url http://hdl.handle.net/10773/40041
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799137751902191616