Development of a HEK293 Cell-line Digital Twin Based on Hybrid Semi- Parametric Modeling at the Genome-Scale

Detalhes bibliográficos
Autor(a) principal: Oliveira, Mário Gil Poiares Rodrigues de
Data de Publicação: 2022
Tipo de documento: Dissertação
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10362/142477
Resumo: The speed at which new drugs and therapies have been developed in the last years has put immense pressure in the biopharmaceutical industry to constantly rethink and improve its manufacturing processes for a large variety of molecules in order to be able to meet market demand. To face this growing challenge, companies need to fully embrace the principles of Industry 4.0, and take advantage of these new tools to increase process efficiency. Bioreactor Digital twins are examples of such tools that use mathematical models to replicate the bioreactor environment virtually. The virtual reactor can be used to dynamically and autonomously assess and deploy new control strategies to improve cell culture in real time, while allowing for new insights into the cell culture mechanisms. As such, the development of a working digital twin is contingent on development of an accurate mathematical model that adequately captures the complex functional relationships underlying biological systems. This study develops a novel genome-scale hybrid modeling methodology with application to a HEK293 cell line. Specifically, a hybrid modeling approach is developed that blends deep neural networks with a genome scale model (hybrid GEM) to fully describe intracellular processes as function of measurable and/or manipulable process parameters. The hybrid GEM uses state-of-the-art deep learning algorithms such as adaptive moment estimation (Adam). The HEK293 hybrid GEM is trained with a relatively low amount of experiments, matching the performance of deep learning neural networks. The results show that the trained hybrid GEM is able to make accurate predictions of the metabolic fluxes and cellular growth rate from changes in the concentrations of biochemical species in the culture media. The establishment of a novel, functional, hybrid deep metabolic model opens the door for the implementation of cell line digital twins in the biopharma industry. This study is a step forward to the realization of “Biopharma 4.0”, with potential impact in process efficiency, robustness and transparency.
id RCAP_96cb081762bbe04c419b7e9d4341dcff
oai_identifier_str oai:run.unl.pt:10362/142477
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Development of a HEK293 Cell-line Digital Twin Based on Hybrid Semi- Parametric Modeling at the Genome-ScaleCell Line Digital TwinsBiopharmaceuticalsDeep LearningArtificial Neural NetworksGenome-scale ModelsHEK293 Cell LineDomínio/Área Científica::Engenharia e Tecnologia::Outras Engenharias e TecnologiasThe speed at which new drugs and therapies have been developed in the last years has put immense pressure in the biopharmaceutical industry to constantly rethink and improve its manufacturing processes for a large variety of molecules in order to be able to meet market demand. To face this growing challenge, companies need to fully embrace the principles of Industry 4.0, and take advantage of these new tools to increase process efficiency. Bioreactor Digital twins are examples of such tools that use mathematical models to replicate the bioreactor environment virtually. The virtual reactor can be used to dynamically and autonomously assess and deploy new control strategies to improve cell culture in real time, while allowing for new insights into the cell culture mechanisms. As such, the development of a working digital twin is contingent on development of an accurate mathematical model that adequately captures the complex functional relationships underlying biological systems. This study develops a novel genome-scale hybrid modeling methodology with application to a HEK293 cell line. Specifically, a hybrid modeling approach is developed that blends deep neural networks with a genome scale model (hybrid GEM) to fully describe intracellular processes as function of measurable and/or manipulable process parameters. The hybrid GEM uses state-of-the-art deep learning algorithms such as adaptive moment estimation (Adam). The HEK293 hybrid GEM is trained with a relatively low amount of experiments, matching the performance of deep learning neural networks. The results show that the trained hybrid GEM is able to make accurate predictions of the metabolic fluxes and cellular growth rate from changes in the concentrations of biochemical species in the culture media. The establishment of a novel, functional, hybrid deep metabolic model opens the door for the implementation of cell line digital twins in the biopharma industry. This study is a step forward to the realization of “Biopharma 4.0”, with potential impact in process efficiency, robustness and transparency.A velocidade à qual novos fármacos e tratamentos têm sido desenvolvidos nos últimos anos tem colocado imensa pressão na indústria biofarmacêutica para que esta esteja constantemente a repensar e melhorar os processos produtivos de uma grande variedade de moléculas, de forma a corresponder à procura do mercado. Para enfrentar esta realidade em mudança, as companhias necessitam de se envolverem completamente nos princípios da Indústria 4.0 e tomar partido destas novas vantagens para melhorar a eficiência dos processos. Os Gémeos Digitais de biorreatores são um exemplo dessas novas ferramentas que usam modelos matemáticos para replicar o ambiente de um biorreator de forma virtual. O reator virtual pode ser usado para testar e implementar dinamicamente novas formas estratégias de controlo para melhorar a cultura celular em tempo real, enquanto permite novas perspetivas sobre os mecanismos de cultura celular. Como tal, o desenvolvimento de um Gémeo Digital funcional está dependente do desenvolvimento de um modelo matemático preciso que capture adequadamente as complexas relações funcionais entre os sistemas biológicos subjacentes. Este estudo desenvolve uma nova metodologia de modelação híbrida à escala genómica, que funde redes neuronais profundas com um modelo à escala genómica (GEM híbrido) para descrever integralmente os processos intracelulares em função de parâmetros processuais mensuráveis e/ou manipuláveis. A GEM híbrida utiliza algoritmos de aprendizagem profunda de última geração como a estimativa de momento adaptativo (Adam). A rede GEM híbrida HEK293 é trainada com um número relativamente reduzido de experiências, igualando o desempenho de redes de aprendizagem profunda. Os resultados mostram que a rede híbrida é capaz de fazer previsões precisas dos fluxos metabólicos e do crescimento celular a partir de alterações nas concentrações das espécies bioquímicas no meio de cultura. O estabelecimento de um novo modelo metabólico profundo híbrido funcional abre a porta ao desenvolvimento de Gémeos Digitais para a indústria biofarmacêutica. Este estudo é um passo em frente na realização da Biofarmacêutica 4.0, com um impacto potencial na eficiência, robustez e transparência nos processos.GlaxoSmithKline Biologicals SAOliveira, RuiRUNOliveira, Mário Gil Poiares Rodrigues de2022-06-282025-03-30T00:00:00Z2022-06-28T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10362/142477enginfo:eu-repo/semantics/embargoedAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-03-11T05:20:12Zoai:run.unl.pt:10362/142477Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T03:50:20.369361Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Development of a HEK293 Cell-line Digital Twin Based on Hybrid Semi- Parametric Modeling at the Genome-Scale
title Development of a HEK293 Cell-line Digital Twin Based on Hybrid Semi- Parametric Modeling at the Genome-Scale
spellingShingle Development of a HEK293 Cell-line Digital Twin Based on Hybrid Semi- Parametric Modeling at the Genome-Scale
Oliveira, Mário Gil Poiares Rodrigues de
Cell Line Digital Twins
Biopharmaceuticals
Deep Learning
Artificial Neural Networks
Genome-scale Models
HEK293 Cell Line
Domínio/Área Científica::Engenharia e Tecnologia::Outras Engenharias e Tecnologias
title_short Development of a HEK293 Cell-line Digital Twin Based on Hybrid Semi- Parametric Modeling at the Genome-Scale
title_full Development of a HEK293 Cell-line Digital Twin Based on Hybrid Semi- Parametric Modeling at the Genome-Scale
title_fullStr Development of a HEK293 Cell-line Digital Twin Based on Hybrid Semi- Parametric Modeling at the Genome-Scale
title_full_unstemmed Development of a HEK293 Cell-line Digital Twin Based on Hybrid Semi- Parametric Modeling at the Genome-Scale
title_sort Development of a HEK293 Cell-line Digital Twin Based on Hybrid Semi- Parametric Modeling at the Genome-Scale
author Oliveira, Mário Gil Poiares Rodrigues de
author_facet Oliveira, Mário Gil Poiares Rodrigues de
author_role author
dc.contributor.none.fl_str_mv Oliveira, Rui
RUN
dc.contributor.author.fl_str_mv Oliveira, Mário Gil Poiares Rodrigues de
dc.subject.por.fl_str_mv Cell Line Digital Twins
Biopharmaceuticals
Deep Learning
Artificial Neural Networks
Genome-scale Models
HEK293 Cell Line
Domínio/Área Científica::Engenharia e Tecnologia::Outras Engenharias e Tecnologias
topic Cell Line Digital Twins
Biopharmaceuticals
Deep Learning
Artificial Neural Networks
Genome-scale Models
HEK293 Cell Line
Domínio/Área Científica::Engenharia e Tecnologia::Outras Engenharias e Tecnologias
description The speed at which new drugs and therapies have been developed in the last years has put immense pressure in the biopharmaceutical industry to constantly rethink and improve its manufacturing processes for a large variety of molecules in order to be able to meet market demand. To face this growing challenge, companies need to fully embrace the principles of Industry 4.0, and take advantage of these new tools to increase process efficiency. Bioreactor Digital twins are examples of such tools that use mathematical models to replicate the bioreactor environment virtually. The virtual reactor can be used to dynamically and autonomously assess and deploy new control strategies to improve cell culture in real time, while allowing for new insights into the cell culture mechanisms. As such, the development of a working digital twin is contingent on development of an accurate mathematical model that adequately captures the complex functional relationships underlying biological systems. This study develops a novel genome-scale hybrid modeling methodology with application to a HEK293 cell line. Specifically, a hybrid modeling approach is developed that blends deep neural networks with a genome scale model (hybrid GEM) to fully describe intracellular processes as function of measurable and/or manipulable process parameters. The hybrid GEM uses state-of-the-art deep learning algorithms such as adaptive moment estimation (Adam). The HEK293 hybrid GEM is trained with a relatively low amount of experiments, matching the performance of deep learning neural networks. The results show that the trained hybrid GEM is able to make accurate predictions of the metabolic fluxes and cellular growth rate from changes in the concentrations of biochemical species in the culture media. The establishment of a novel, functional, hybrid deep metabolic model opens the door for the implementation of cell line digital twins in the biopharma industry. This study is a step forward to the realization of “Biopharma 4.0”, with potential impact in process efficiency, robustness and transparency.
publishDate 2022
dc.date.none.fl_str_mv 2022-06-28
2022-06-28T00:00:00Z
2025-03-30T00:00:00Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10362/142477
url http://hdl.handle.net/10362/142477
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/embargoedAccess
eu_rights_str_mv embargoedAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799138100610334720