Big data analytics applied to sensor data of engeneering structures: predictive methods
Autor(a) principal: | |
---|---|
Data de Publicação: | 2017 |
Tipo de documento: | Dissertação |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10071/15483 |
Resumo: | Predictive models are fundamental instruments for providing dam safety analysis. They are important tools to retrieve conclusions about the structural safety of these dams. The data for these predictive models is gathered through sensors embedded within these structures. Even though predictive models are powerful tools for analysis and prediction, other machine learning and statistical models, like neural networks, have been developed over the years. Due to the many ways dam safety analyses is performed, the focus is to improve the existing methods by comparing them with each other. This work is focused on developing the methodology that compares different predictive models, like the Multiple Linear Regression Model, the Ridge Regression Model, the Principal Component Regression Model and Neural Networks, as well as comparing different re-sampling techniques for separating the data. This methodology is applied to a case study, with the purpose of finding which combinations of input variables provide the highest accuracy for predicting the behavior of these structures. |
id |
RCAP_9704cb6e7d47c997b93cdabcc661825f |
---|---|
oai_identifier_str |
oai:repositorio.iscte-iul.pt:10071/15483 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Big data analytics applied to sensor data of engeneering structures: predictive methodsPredictive analyticsMachine learningData miningBig dataStatistical analysisDam monitoringRedes neuronaisModelos estatísticosMétodos de previsãoPredictive models are fundamental instruments for providing dam safety analysis. They are important tools to retrieve conclusions about the structural safety of these dams. The data for these predictive models is gathered through sensors embedded within these structures. Even though predictive models are powerful tools for analysis and prediction, other machine learning and statistical models, like neural networks, have been developed over the years. Due to the many ways dam safety analyses is performed, the focus is to improve the existing methods by comparing them with each other. This work is focused on developing the methodology that compares different predictive models, like the Multiple Linear Regression Model, the Ridge Regression Model, the Principal Component Regression Model and Neural Networks, as well as comparing different re-sampling techniques for separating the data. This methodology is applied to a case study, with the purpose of finding which combinations of input variables provide the highest accuracy for predicting the behavior of these structures.Modelos preditivos são instrumentos fundamentais para a análise da segurança de barragens. São importantes para obter conclusões acerca da segurança estrutural destas. Os dados utilizados nos modelos preditivos, são obtidos através de sensores que se encontram embutidos nas estruturas. Apesar dos algoritmos preditivos serem ferramentas poderosas para a análise e previsão, outras técnicas de Machine Learning e modelos estatísticos, como as redes neuronais, têm sido desenvolvidas e utilizadas nestas áreas ao longo dos anos. Devido às diferentes formas que a monitorização destas estruturas é feita, o foco está em melhorar os métodos existentes, através de uma análise comparativa. Este trabalho tem como finalidade o desenvolvimento de uma metodologia que compare os diferentes algoritmos preditivos, como a Multiple Linear Regression, a Ridge Regression, a Principal Component Regression e as Redes Neuronais, bem como a aplicação de diferentes técnicas de separação de dados. Esta metodologia será aplicada a um caso de estudo, com a finalidade de determinar qual ou quais as combinações de variáveis que obtêm o melhor desempenho na previsão do seu comportamento.2018-04-02T16:05:56Z2017-12-12T00:00:00Z2017-12-122017-10info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfapplication/octet-streamhttp://hdl.handle.net/10071/15483TID:201782359engCaçador, Filipe Galvão Chambelinfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-11-09T17:42:46Zoai:repositorio.iscte-iul.pt:10071/15483Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T22:20:04.074938Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Big data analytics applied to sensor data of engeneering structures: predictive methods |
title |
Big data analytics applied to sensor data of engeneering structures: predictive methods |
spellingShingle |
Big data analytics applied to sensor data of engeneering structures: predictive methods Caçador, Filipe Galvão Chambel Predictive analytics Machine learning Data mining Big data Statistical analysis Dam monitoring Redes neuronais Modelos estatísticos Métodos de previsão |
title_short |
Big data analytics applied to sensor data of engeneering structures: predictive methods |
title_full |
Big data analytics applied to sensor data of engeneering structures: predictive methods |
title_fullStr |
Big data analytics applied to sensor data of engeneering structures: predictive methods |
title_full_unstemmed |
Big data analytics applied to sensor data of engeneering structures: predictive methods |
title_sort |
Big data analytics applied to sensor data of engeneering structures: predictive methods |
author |
Caçador, Filipe Galvão Chambel |
author_facet |
Caçador, Filipe Galvão Chambel |
author_role |
author |
dc.contributor.author.fl_str_mv |
Caçador, Filipe Galvão Chambel |
dc.subject.por.fl_str_mv |
Predictive analytics Machine learning Data mining Big data Statistical analysis Dam monitoring Redes neuronais Modelos estatísticos Métodos de previsão |
topic |
Predictive analytics Machine learning Data mining Big data Statistical analysis Dam monitoring Redes neuronais Modelos estatísticos Métodos de previsão |
description |
Predictive models are fundamental instruments for providing dam safety analysis. They are important tools to retrieve conclusions about the structural safety of these dams. The data for these predictive models is gathered through sensors embedded within these structures. Even though predictive models are powerful tools for analysis and prediction, other machine learning and statistical models, like neural networks, have been developed over the years. Due to the many ways dam safety analyses is performed, the focus is to improve the existing methods by comparing them with each other. This work is focused on developing the methodology that compares different predictive models, like the Multiple Linear Regression Model, the Ridge Regression Model, the Principal Component Regression Model and Neural Networks, as well as comparing different re-sampling techniques for separating the data. This methodology is applied to a case study, with the purpose of finding which combinations of input variables provide the highest accuracy for predicting the behavior of these structures. |
publishDate |
2017 |
dc.date.none.fl_str_mv |
2017-12-12T00:00:00Z 2017-12-12 2017-10 2018-04-02T16:05:56Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10071/15483 TID:201782359 |
url |
http://hdl.handle.net/10071/15483 |
identifier_str_mv |
TID:201782359 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf application/octet-stream |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799134760527724544 |