Big data analytics applied to sensor data of engeneering structures: predictive methods

Detalhes bibliográficos
Autor(a) principal: Caçador, Filipe Galvão Chambel
Data de Publicação: 2017
Tipo de documento: Dissertação
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10071/15483
Resumo: Predictive models are fundamental instruments for providing dam safety analysis. They are important tools to retrieve conclusions about the structural safety of these dams. The data for these predictive models is gathered through sensors embedded within these structures. Even though predictive models are powerful tools for analysis and prediction, other machine learning and statistical models, like neural networks, have been developed over the years. Due to the many ways dam safety analyses is performed, the focus is to improve the existing methods by comparing them with each other. This work is focused on developing the methodology that compares different predictive models, like the Multiple Linear Regression Model, the Ridge Regression Model, the Principal Component Regression Model and Neural Networks, as well as comparing different re-sampling techniques for separating the data. This methodology is applied to a case study, with the purpose of finding which combinations of input variables provide the highest accuracy for predicting the behavior of these structures.
id RCAP_9704cb6e7d47c997b93cdabcc661825f
oai_identifier_str oai:repositorio.iscte-iul.pt:10071/15483
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Big data analytics applied to sensor data of engeneering structures: predictive methodsPredictive analyticsMachine learningData miningBig dataStatistical analysisDam monitoringRedes neuronaisModelos estatísticosMétodos de previsãoPredictive models are fundamental instruments for providing dam safety analysis. They are important tools to retrieve conclusions about the structural safety of these dams. The data for these predictive models is gathered through sensors embedded within these structures. Even though predictive models are powerful tools for analysis and prediction, other machine learning and statistical models, like neural networks, have been developed over the years. Due to the many ways dam safety analyses is performed, the focus is to improve the existing methods by comparing them with each other. This work is focused on developing the methodology that compares different predictive models, like the Multiple Linear Regression Model, the Ridge Regression Model, the Principal Component Regression Model and Neural Networks, as well as comparing different re-sampling techniques for separating the data. This methodology is applied to a case study, with the purpose of finding which combinations of input variables provide the highest accuracy for predicting the behavior of these structures.Modelos preditivos são instrumentos fundamentais para a análise da segurança de barragens. São importantes para obter conclusões acerca da segurança estrutural destas. Os dados utilizados nos modelos preditivos, são obtidos através de sensores que se encontram embutidos nas estruturas. Apesar dos algoritmos preditivos serem ferramentas poderosas para a análise e previsão, outras técnicas de Machine Learning e modelos estatísticos, como as redes neuronais, têm sido desenvolvidas e utilizadas nestas áreas ao longo dos anos. Devido às diferentes formas que a monitorização destas estruturas é feita, o foco está em melhorar os métodos existentes, através de uma análise comparativa. Este trabalho tem como finalidade o desenvolvimento de uma metodologia que compare os diferentes algoritmos preditivos, como a Multiple Linear Regression, a Ridge Regression, a Principal Component Regression e as Redes Neuronais, bem como a aplicação de diferentes técnicas de separação de dados. Esta metodologia será aplicada a um caso de estudo, com a finalidade de determinar qual ou quais as combinações de variáveis que obtêm o melhor desempenho na previsão do seu comportamento.2018-04-02T16:05:56Z2017-12-12T00:00:00Z2017-12-122017-10info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfapplication/octet-streamhttp://hdl.handle.net/10071/15483TID:201782359engCaçador, Filipe Galvão Chambelinfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-11-09T17:42:46Zoai:repositorio.iscte-iul.pt:10071/15483Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T22:20:04.074938Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Big data analytics applied to sensor data of engeneering structures: predictive methods
title Big data analytics applied to sensor data of engeneering structures: predictive methods
spellingShingle Big data analytics applied to sensor data of engeneering structures: predictive methods
Caçador, Filipe Galvão Chambel
Predictive analytics
Machine learning
Data mining
Big data
Statistical analysis
Dam monitoring
Redes neuronais
Modelos estatísticos
Métodos de previsão
title_short Big data analytics applied to sensor data of engeneering structures: predictive methods
title_full Big data analytics applied to sensor data of engeneering structures: predictive methods
title_fullStr Big data analytics applied to sensor data of engeneering structures: predictive methods
title_full_unstemmed Big data analytics applied to sensor data of engeneering structures: predictive methods
title_sort Big data analytics applied to sensor data of engeneering structures: predictive methods
author Caçador, Filipe Galvão Chambel
author_facet Caçador, Filipe Galvão Chambel
author_role author
dc.contributor.author.fl_str_mv Caçador, Filipe Galvão Chambel
dc.subject.por.fl_str_mv Predictive analytics
Machine learning
Data mining
Big data
Statistical analysis
Dam monitoring
Redes neuronais
Modelos estatísticos
Métodos de previsão
topic Predictive analytics
Machine learning
Data mining
Big data
Statistical analysis
Dam monitoring
Redes neuronais
Modelos estatísticos
Métodos de previsão
description Predictive models are fundamental instruments for providing dam safety analysis. They are important tools to retrieve conclusions about the structural safety of these dams. The data for these predictive models is gathered through sensors embedded within these structures. Even though predictive models are powerful tools for analysis and prediction, other machine learning and statistical models, like neural networks, have been developed over the years. Due to the many ways dam safety analyses is performed, the focus is to improve the existing methods by comparing them with each other. This work is focused on developing the methodology that compares different predictive models, like the Multiple Linear Regression Model, the Ridge Regression Model, the Principal Component Regression Model and Neural Networks, as well as comparing different re-sampling techniques for separating the data. This methodology is applied to a case study, with the purpose of finding which combinations of input variables provide the highest accuracy for predicting the behavior of these structures.
publishDate 2017
dc.date.none.fl_str_mv 2017-12-12T00:00:00Z
2017-12-12
2017-10
2018-04-02T16:05:56Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10071/15483
TID:201782359
url http://hdl.handle.net/10071/15483
identifier_str_mv TID:201782359
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
application/octet-stream
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799134760527724544