On difunctionality of class relations

Detalhes bibliográficos
Autor(a) principal: Hoefnagel, Michael
Data de Publicação: 2020
Outros Autores: Janelidze, Zurab, Rodelo, Diana
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10400.1/16538
Resumo: For a given variety V of algebras, we define a class relation to be a binary relation R subset of S(2)which is of the form R = S-2 boolean AND K for some congruence class K on A(2), where A is an algebra in V such that S subset of A. In this paper we study the following property of V : every reflexive class relation is an equivalence relation. In particular, we obtain equivalent characterizations of this property analogous to well-known equivalent characterizations of congruence-permutable varieties. This property determines a Mal'tsev condition on the variety and in a suitable sense, it is a join of Chajda's egg-box property as well as Duda's direct decomposability of congruence classes.
id RCAP_9727689e26b822ee7156b784fd19cef9
oai_identifier_str oai:sapientia.ualg.pt:10400.1/16538
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling On difunctionality of class relationsClass relationsCongruence permutabilityCongruence distributivityCongruence modularityDirectly decomposable congruence classesDifunctionalityEgg-box propertyMal'tsev conditionMal'tsev varietyShifting lemmaMathematicsFor a given variety V of algebras, we define a class relation to be a binary relation R subset of S(2)which is of the form R = S-2 boolean AND K for some congruence class K on A(2), where A is an algebra in V such that S subset of A. In this paper we study the following property of V : every reflexive class relation is an equivalence relation. In particular, we obtain equivalent characterizations of this property analogous to well-known equivalent characterizations of congruence-permutable varieties. This property determines a Mal'tsev condition on the variety and in a suitable sense, it is a join of Chajda's egg-box property as well as Duda's direct decomposability of congruence classes.South African National Research FoundationNational Research Foundation - South AfricaCentre for Mathematics of the University of Coimbra - Portuguese Government through FCT/MEC [UID/MAT/00324/2019]European Regional Development Fund through the Partnership Agreement PT2020SpringerSapientiaHoefnagel, MichaelJanelidze, ZurabRodelo, Diana2021-06-24T11:35:48Z2020-032020-03-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10400.1/16538eng0002-524010.1007/s00012-020-00651-zinfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-07-24T10:28:29Zoai:sapientia.ualg.pt:10400.1/16538Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T20:06:39.668166Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv On difunctionality of class relations
title On difunctionality of class relations
spellingShingle On difunctionality of class relations
Hoefnagel, Michael
Class relations
Congruence permutability
Congruence distributivity
Congruence modularity
Directly decomposable congruence classes
Difunctionality
Egg-box property
Mal'tsev condition
Mal'tsev variety
Shifting lemma
Mathematics
title_short On difunctionality of class relations
title_full On difunctionality of class relations
title_fullStr On difunctionality of class relations
title_full_unstemmed On difunctionality of class relations
title_sort On difunctionality of class relations
author Hoefnagel, Michael
author_facet Hoefnagel, Michael
Janelidze, Zurab
Rodelo, Diana
author_role author
author2 Janelidze, Zurab
Rodelo, Diana
author2_role author
author
dc.contributor.none.fl_str_mv Sapientia
dc.contributor.author.fl_str_mv Hoefnagel, Michael
Janelidze, Zurab
Rodelo, Diana
dc.subject.por.fl_str_mv Class relations
Congruence permutability
Congruence distributivity
Congruence modularity
Directly decomposable congruence classes
Difunctionality
Egg-box property
Mal'tsev condition
Mal'tsev variety
Shifting lemma
Mathematics
topic Class relations
Congruence permutability
Congruence distributivity
Congruence modularity
Directly decomposable congruence classes
Difunctionality
Egg-box property
Mal'tsev condition
Mal'tsev variety
Shifting lemma
Mathematics
description For a given variety V of algebras, we define a class relation to be a binary relation R subset of S(2)which is of the form R = S-2 boolean AND K for some congruence class K on A(2), where A is an algebra in V such that S subset of A. In this paper we study the following property of V : every reflexive class relation is an equivalence relation. In particular, we obtain equivalent characterizations of this property analogous to well-known equivalent characterizations of congruence-permutable varieties. This property determines a Mal'tsev condition on the variety and in a suitable sense, it is a join of Chajda's egg-box property as well as Duda's direct decomposability of congruence classes.
publishDate 2020
dc.date.none.fl_str_mv 2020-03
2020-03-01T00:00:00Z
2021-06-24T11:35:48Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10400.1/16538
url http://hdl.handle.net/10400.1/16538
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 0002-5240
10.1007/s00012-020-00651-z
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Springer
publisher.none.fl_str_mv Springer
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799133308859187200