Spectral properties of the n-Queens' graphs
Autor(a) principal: | |
---|---|
Data de Publicação: | 2020 |
Outros Autores: | , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10773/30086 |
Resumo: | The n-Queens’ graph, Q(n), is the graph associated to the n×n chessboard (a generalization of the classical 8×8 chessboard), with n 2 vertices, each one corresponding to a square of the chessboard. Two vertices of Q(n) are adjacent if and only if they are in the same row, in the same column or in the same diagonal of the chessboard. After a short overview on the main combinatorial properties of Q(n), its spectral properties are investigated. First, a lower bound on the least eigenvalue of an arbitrary graph is obtained using clique edge partitions and a sufficient condition for this lower bound be attained is deduced. For the particular case of Q(n), we prove that for every n, its least eigenvalue is not less than −4 and it is equal to −4 with multiplicity (n − 3)2 , for every n ≥ 4. Furthermore, n − 4 is also an eigenvalue of Q(n), with multiplicity at least n−2 2 when n is even and at least n+1 2 when n is odd. A conjecture about the integer eigenvalues of Q(n) is presented. We finish this article with an algorithm to determine an equitable partition of the n-Queens’ graph, Q(n), for n ≥ 3, concluding that such equitable partition has (⌈n/2⌉+1)⌈n/2⌉ 2 cells. |
id |
RCAP_98f46f32d130ab8a240de9d05188b7df |
---|---|
oai_identifier_str |
oai:ria.ua.pt:10773/30086 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Spectral properties of the n-Queens' graphsQueens' graphGraph spectraEquitable partitionThe n-Queens’ graph, Q(n), is the graph associated to the n×n chessboard (a generalization of the classical 8×8 chessboard), with n 2 vertices, each one corresponding to a square of the chessboard. Two vertices of Q(n) are adjacent if and only if they are in the same row, in the same column or in the same diagonal of the chessboard. After a short overview on the main combinatorial properties of Q(n), its spectral properties are investigated. First, a lower bound on the least eigenvalue of an arbitrary graph is obtained using clique edge partitions and a sufficient condition for this lower bound be attained is deduced. For the particular case of Q(n), we prove that for every n, its least eigenvalue is not less than −4 and it is equal to −4 with multiplicity (n − 3)2 , for every n ≥ 4. Furthermore, n − 4 is also an eigenvalue of Q(n), with multiplicity at least n−2 2 when n is even and at least n+1 2 when n is odd. A conjecture about the integer eigenvalues of Q(n) is presented. We finish this article with an algorithm to determine an equitable partition of the n-Queens’ graph, Q(n), for n ≥ 3, concluding that such equitable partition has (⌈n/2⌉+1)⌈n/2⌉ 2 cells.The $n$-Queens' graph, $\mathcal{Q}(n)$, is the graph associated to the $n \times n$ chessboard (a generalization of the classical $8 \times 8$ chessboard), with $n^2$ vertices, each one corresponding to a square of the chessboard. Two vertices of $\mathcal{Q}(n)$ are \textit{adjacent}, that is, linked by an edge, if and only if they are in the same row, in the same column or in the same diagonal of the chessboard. After a short overview on the main combinatorial properties of $\mathcal{Q}(n)$, its spectral properties are investigated. First, a lower bound on the least eigenvalue of an arbitrary graph is obtained using clique edge partitions and a sufficient condition for this lower bound be attained is deduced. For the particular case of $\mathcal{Q}(n)$, we prove that for every $n$, its least eigenvalue is not less than $-4$ and it is equal to $-4$ with multiplicity $(n-3)^2$, for every $n \ge 4$. Furthermore, $n-4$ is also an eigenvalue of $\mathcal{Q}(n)$, with multiplicity at least $\frac{n-2}{2}$ when $n$ is even and at least $\frac{n+1}{2}$ when $n$ is odd. A conjecture about the integer eigenvalues of $\mathcal{Q}(n)$ is presented. We finish this article with an algorithm to determine an equitable partition of the $n$-Queens' graph, $\mathcal{Q}(n)$, for $n \ge 3$, concluding that such equitable partition has $\frac{(\lceil n/2\rceil+1)\lceil n/2\rceil}{2}$ cells.arXiv2020-12-15T19:35:01Z2020-12-04T00:00:00Z2020-12-04info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10773/30086engCardoso, Domingos M.Costa, Inês SerôdioDuarte, Ruiinfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-05-06T04:29:00Zoai:ria.ua.pt:10773/30086Portal AgregadorONGhttps://www.rcaap.pt/oai/openairemluisa.alvim@gmail.comopendoar:71602024-05-06T04:29Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Spectral properties of the n-Queens' graphs |
title |
Spectral properties of the n-Queens' graphs |
spellingShingle |
Spectral properties of the n-Queens' graphs Cardoso, Domingos M. Queens' graph Graph spectra Equitable partition |
title_short |
Spectral properties of the n-Queens' graphs |
title_full |
Spectral properties of the n-Queens' graphs |
title_fullStr |
Spectral properties of the n-Queens' graphs |
title_full_unstemmed |
Spectral properties of the n-Queens' graphs |
title_sort |
Spectral properties of the n-Queens' graphs |
author |
Cardoso, Domingos M. |
author_facet |
Cardoso, Domingos M. Costa, Inês Serôdio Duarte, Rui |
author_role |
author |
author2 |
Costa, Inês Serôdio Duarte, Rui |
author2_role |
author author |
dc.contributor.author.fl_str_mv |
Cardoso, Domingos M. Costa, Inês Serôdio Duarte, Rui |
dc.subject.por.fl_str_mv |
Queens' graph Graph spectra Equitable partition |
topic |
Queens' graph Graph spectra Equitable partition |
description |
The n-Queens’ graph, Q(n), is the graph associated to the n×n chessboard (a generalization of the classical 8×8 chessboard), with n 2 vertices, each one corresponding to a square of the chessboard. Two vertices of Q(n) are adjacent if and only if they are in the same row, in the same column or in the same diagonal of the chessboard. After a short overview on the main combinatorial properties of Q(n), its spectral properties are investigated. First, a lower bound on the least eigenvalue of an arbitrary graph is obtained using clique edge partitions and a sufficient condition for this lower bound be attained is deduced. For the particular case of Q(n), we prove that for every n, its least eigenvalue is not less than −4 and it is equal to −4 with multiplicity (n − 3)2 , for every n ≥ 4. Furthermore, n − 4 is also an eigenvalue of Q(n), with multiplicity at least n−2 2 when n is even and at least n+1 2 when n is odd. A conjecture about the integer eigenvalues of Q(n) is presented. We finish this article with an algorithm to determine an equitable partition of the n-Queens’ graph, Q(n), for n ≥ 3, concluding that such equitable partition has (⌈n/2⌉+1)⌈n/2⌉ 2 cells. |
publishDate |
2020 |
dc.date.none.fl_str_mv |
2020-12-15T19:35:01Z 2020-12-04T00:00:00Z 2020-12-04 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10773/30086 |
url |
http://hdl.handle.net/10773/30086 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
arXiv |
publisher.none.fl_str_mv |
arXiv |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
mluisa.alvim@gmail.com |
_version_ |
1817543762252922880 |