Fast fully automatic myocardial segmentation in 4D cine cardiac magnetic resonance datasets

Detalhes bibliográficos
Autor(a) principal: Queirós, Sandro Filipe Monteiro
Data de Publicação: 2013
Tipo de documento: Dissertação
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/1822/27706
Resumo: Dissertação de mestrado integrado em Engenharia Biomédica
id RCAP_9996e64ef09d27b82e1849903241c355
oai_identifier_str oai:repositorium.sdum.uminho.pt:1822/27706
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Fast fully automatic myocardial segmentation in 4D cine cardiac magnetic resonance datasets616.1612.12616-07361:681.3681.3:61Dissertação de mestrado integrado em Engenharia BiomédicaCardiovascular diseases (CVDs) are the leading cause of death in the world, representing 30% of all global deaths. Among others, assessment of the left ventricular (LV) morphology and global function using non-invasive cardiac imaging is an interesting technique for diagnosis and treatment follow-up of patients with CVDs. Nowadays, cardiac magnetic resonance (CMR) imaging is the gold-standard technique for the quantification of LV volumes, mass and ejection fraction, requiring the delineation of endocardial and epicardial contours of the left ventricle from cine MR images. In clinical practice, the physicians perform this segmentation manually, being a tedious, time consuming and unpractical task. Even though several (semi-)automated methods have been presented for LV CMR segmentation, fast, automatic and optimal boundaries assessment is still lacking, usually requiring the physician to manually correct the contours. In the present work, we propose a novel fast fully automatic 3D+time LV segmentation framework for CMR datasets. The proposed framework presents three conceptual blocks: 1) an automatic 2D mid-ventricular initialization and segmentation; 2) an automatic stack initialization followed by a 3D segmentation at the end-diastolic phase; and 3) a tracking procedure to delineate both endo and epicardial contours throughout the cardiac cycle. In each block, specific CMR-targeted algorithms are proposed for the different steps required. Hereto, we propose automatic and feasible initialization procedures. Moreover, we adapt the recent B-spline Explicit Active Surfaces (BEAS) framework to the properties of CMR image segmentation by integrating dedicated energy terms and making use of a cylindrical coordinate system that better fits the topology of CMR data. At last, two tracking methods are presented and compared. The proposed framework has been validated on 45 4D CMR datasets from a publicly available database and on a large database from an ongoing multi-center clinical trial with 318 4D datasets. In the technical validation, the framework showed competitive results against the state-of-the-art methods, presenting leading results in both accuracy and average computational time in the common database used for comparative purposes. Moreover, the results in the large scale clinical validation confirmed the high feasibility and robustness of the proposed framework for accurate LV morphology and global function assessment. In combination with the low computational burden of the method, the present methodology seems promising to be used in daily clinical practice.As doenças cardiovasculares (DCVs) são a principal causa de morte no mundo, representando 30% destas a nível global. Na prática clínica, uma técnica empregue no diagnóstico de pacientes com DCVs é a avaliação da morfologia e da função global do ventrículo esquerdo (VE), através de técnicas de imagiologia não-invasivas. Atualmente, a ressonância magnética cardíaca (RMC) é a modalidade de referência na quantificação dos volumes, massa e fração de ejeção do VE, exigindo a delimitação dos contornos do endocárdio e epicárdio a partir de imagens dinâmicas de RMC. Na prática clínica diária, o método preferencial é a segmentação manual. No entanto, esta é uma tarefa demorada, sujeita a erro humano e pouco prática. Apesar de até à data diversos métodos (semi)-automáticos terem sido apresentados para a segmentação do VE em imagens de RMC, ainda não existe um método capaz de avaliar idealmente os contornos de uma forma automática, rápida e precisa, levando a que geralmente o médico necessite de corrigir manualmente os contornos. No presente trabalho é proposta uma nova framework para a segmentação automática do VE em imagens 3D+tempo de RMC. O algoritmo apresenta três blocos principais: 1) uma inicialização e segmentação automática 2D num corte medial do ventrículo; 2) uma inicialização e segmentação tridimensional no volume correspondente ao final da diástole; e 3) um algoritmo de tracking para obter os contornos ao longo de todo o ciclo cardíaco. Neste sentido, são propostos procedimentos de inicialização automática com elevada robustez. Mais ainda, é proposta uma adaptação da recente framework “B-spline Explicit Active Surfaces” (BEAS) com a integração de uma energia específica para as imagens de RMC e utilizando uma formulação cilíndrica para tirar partido da topologia destas imagens. Por último, são apresentados e comparados dois algoritmos de tracking para a obtenção dos contornos ao longo do tempo. A framework proposta foi validada em 45 datasets de RMC provenientes de uma base de dados disponível ao público, bem como numa extensa base de dados com 318 datasets para uma validação clínica. Na avaliação técnica, a framework proposta obteve resultados competitivos quando comparada com outros métodos do estado da arte, tendo alcançado resultados de precisão e tempo computacional superiores a estes. Na validação clínica em larga escala, a framework provou apresentar elevada viabilidade e robustez na avaliação da morfologia e função global do VE. Em combinação com o baixo custo computacional do algoritmo, a presente metodologia apresenta uma perspetiva promissora para a sua aplicação na prática clínica diária.Fonseca, Jaime C.D’hooge, JanUniversidade do MinhoQueirós, Sandro Filipe Monteiro20132013-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/1822/27706eng201186349info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-07-21T12:13:18Zoai:repositorium.sdum.uminho.pt:1822/27706Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T19:05:21.121080Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Fast fully automatic myocardial segmentation in 4D cine cardiac magnetic resonance datasets
title Fast fully automatic myocardial segmentation in 4D cine cardiac magnetic resonance datasets
spellingShingle Fast fully automatic myocardial segmentation in 4D cine cardiac magnetic resonance datasets
Queirós, Sandro Filipe Monteiro
616.1
612.12
616-073
61:681.3
681.3:61
title_short Fast fully automatic myocardial segmentation in 4D cine cardiac magnetic resonance datasets
title_full Fast fully automatic myocardial segmentation in 4D cine cardiac magnetic resonance datasets
title_fullStr Fast fully automatic myocardial segmentation in 4D cine cardiac magnetic resonance datasets
title_full_unstemmed Fast fully automatic myocardial segmentation in 4D cine cardiac magnetic resonance datasets
title_sort Fast fully automatic myocardial segmentation in 4D cine cardiac magnetic resonance datasets
author Queirós, Sandro Filipe Monteiro
author_facet Queirós, Sandro Filipe Monteiro
author_role author
dc.contributor.none.fl_str_mv Fonseca, Jaime C.
D’hooge, Jan
Universidade do Minho
dc.contributor.author.fl_str_mv Queirós, Sandro Filipe Monteiro
dc.subject.por.fl_str_mv 616.1
612.12
616-073
61:681.3
681.3:61
topic 616.1
612.12
616-073
61:681.3
681.3:61
description Dissertação de mestrado integrado em Engenharia Biomédica
publishDate 2013
dc.date.none.fl_str_mv 2013
2013-01-01T00:00:00Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/1822/27706
url http://hdl.handle.net/1822/27706
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 201186349
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799132465275600896