Evolution of clonal populations approaching a fitness peak

Detalhes bibliográficos
Autor(a) principal: Gordo, I.
Data de Publicação: 2013
Outros Autores: Campos, P. R. A.
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10400.7/540
Resumo: Populations facing novel environments are expected to evolve through the accumulation of adaptive substitutions. The dynamics of adaptation depend on the fitness landscape and possibly on the genetic background on which new mutations arise. Here, we model the dynamics of adaptive evolution at the phenotypic and genotypic levels, focusing on a Fisherian landscape characterized by a single peak. We find that Fisher's geometrical model of adaptation, extended to allow for small random environmental variations, is able to explain several features made recently in experimentally evolved populations. Consistent with data on populations evolving under controlled conditions, the model predicts that mean population fitness increases rapidly when populations face novel environments and then achieves a dynamic plateau, the rate of molecular evolution is remarkably constant over long periods of evolution, mutators are expected to invade and patterns of epistasis vary along the adaptive walk. Negative epistasis is expected in the initial steps of adaptation but not at later steps, a prediction that remains to be tested. Furthermore, populations are expected to exhibit high levels of phenotypic diversity at all times during their evolution. This implies that populations are possibly able to adapt rapidly to novel abiotic environments.
id RCAP_9a3f6a2687c1a3aac4af1716693f9258
oai_identifier_str oai:arca.igc.gulbenkian.pt:10400.7/540
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Evolution of clonal populations approaching a fitness peakexperimental evolutionclonal interferencemolecular clockepistasisfitness peakPopulations facing novel environments are expected to evolve through the accumulation of adaptive substitutions. The dynamics of adaptation depend on the fitness landscape and possibly on the genetic background on which new mutations arise. Here, we model the dynamics of adaptive evolution at the phenotypic and genotypic levels, focusing on a Fisherian landscape characterized by a single peak. We find that Fisher's geometrical model of adaptation, extended to allow for small random environmental variations, is able to explain several features made recently in experimentally evolved populations. Consistent with data on populations evolving under controlled conditions, the model predicts that mean population fitness increases rapidly when populations face novel environments and then achieves a dynamic plateau, the rate of molecular evolution is remarkably constant over long periods of evolution, mutators are expected to invade and patterns of epistasis vary along the adaptive walk. Negative epistasis is expected in the initial steps of adaptation but not at later steps, a prediction that remains to be tested. Furthermore, populations are expected to exhibit high levels of phenotypic diversity at all times during their evolution. This implies that populations are possibly able to adapt rapidly to novel abiotic environments.CAPES-IGC.The Royal SocietyARCAGordo, I.Campos, P. R. A.2015-12-21T18:25:59Z2013-02-232013-02-23T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfapplication/pdfhttp://hdl.handle.net/10400.7/540engGordo I, Campos PRA. 2012 Evolution of clonal populations approaching a fitness peak. Biol Lett 9: 20120239. http://dx.doi.org/10.1098/rsbl.2012.023910.1098/rsbl.2012.0239info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2022-11-29T14:34:54Zoai:arca.igc.gulbenkian.pt:10400.7/540Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T16:11:47.602248Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Evolution of clonal populations approaching a fitness peak
title Evolution of clonal populations approaching a fitness peak
spellingShingle Evolution of clonal populations approaching a fitness peak
Gordo, I.
experimental evolution
clonal interference
molecular clock
epistasis
fitness peak
title_short Evolution of clonal populations approaching a fitness peak
title_full Evolution of clonal populations approaching a fitness peak
title_fullStr Evolution of clonal populations approaching a fitness peak
title_full_unstemmed Evolution of clonal populations approaching a fitness peak
title_sort Evolution of clonal populations approaching a fitness peak
author Gordo, I.
author_facet Gordo, I.
Campos, P. R. A.
author_role author
author2 Campos, P. R. A.
author2_role author
dc.contributor.none.fl_str_mv ARCA
dc.contributor.author.fl_str_mv Gordo, I.
Campos, P. R. A.
dc.subject.por.fl_str_mv experimental evolution
clonal interference
molecular clock
epistasis
fitness peak
topic experimental evolution
clonal interference
molecular clock
epistasis
fitness peak
description Populations facing novel environments are expected to evolve through the accumulation of adaptive substitutions. The dynamics of adaptation depend on the fitness landscape and possibly on the genetic background on which new mutations arise. Here, we model the dynamics of adaptive evolution at the phenotypic and genotypic levels, focusing on a Fisherian landscape characterized by a single peak. We find that Fisher's geometrical model of adaptation, extended to allow for small random environmental variations, is able to explain several features made recently in experimentally evolved populations. Consistent with data on populations evolving under controlled conditions, the model predicts that mean population fitness increases rapidly when populations face novel environments and then achieves a dynamic plateau, the rate of molecular evolution is remarkably constant over long periods of evolution, mutators are expected to invade and patterns of epistasis vary along the adaptive walk. Negative epistasis is expected in the initial steps of adaptation but not at later steps, a prediction that remains to be tested. Furthermore, populations are expected to exhibit high levels of phenotypic diversity at all times during their evolution. This implies that populations are possibly able to adapt rapidly to novel abiotic environments.
publishDate 2013
dc.date.none.fl_str_mv 2013-02-23
2013-02-23T00:00:00Z
2015-12-21T18:25:59Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10400.7/540
url http://hdl.handle.net/10400.7/540
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv Gordo I, Campos PRA. 2012 Evolution of clonal populations approaching a fitness peak. Biol Lett 9: 20120239. http://dx.doi.org/10.1098/rsbl.2012.0239
10.1098/rsbl.2012.0239
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv The Royal Society
publisher.none.fl_str_mv The Royal Society
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799130573032128512