Causal discovery from time series data

Detalhes bibliográficos
Autor(a) principal: Almeida, Fernanda Ribeiro de
Data de Publicação: 2022
Tipo de documento: Dissertação
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10400.22/21571
Resumo: The drive to understand the laws that govern the universe and ourselves in order to expand our view of reality is deeply rooted in humanity. In science, this urge is a robust process filled with challenges and opportunities given the rapidly growing technology-driven volume of time series data. Causal discovery supports science in an innovative and fast-growing manner with the essential goal of uncovering mathematical orders directly from observational data translated into causal association networks. This scientific tool pledges to accelerate growth in various fields, including life sciences. This work approaches the topic of causal discovery on two levels. First, we address the theory of constraint-based methods on detecting and quantifying causal relations, covering how the methods work, the challenges they face, and the opportunities they present. Second, we explore the PCMCI method with an implementation on both synthetic and real-world data. The results of this work found in applying causal discovery in real physiological signals data may provide insights into the prospects and difficulties of causal structure search in healthcare Big Data and, moreover, the advantages of using causal models in prediction.
id RCAP_9bde95ae905413b3b6549bdb75b58782
oai_identifier_str oai:recipp.ipp.pt:10400.22/21571
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Causal discovery from time series dataCausal discoveryCausal relationsTime-series dataPhysiological signalsMIMIC IIIThe drive to understand the laws that govern the universe and ourselves in order to expand our view of reality is deeply rooted in humanity. In science, this urge is a robust process filled with challenges and opportunities given the rapidly growing technology-driven volume of time series data. Causal discovery supports science in an innovative and fast-growing manner with the essential goal of uncovering mathematical orders directly from observational data translated into causal association networks. This scientific tool pledges to accelerate growth in various fields, including life sciences. This work approaches the topic of causal discovery on two levels. First, we address the theory of constraint-based methods on detecting and quantifying causal relations, covering how the methods work, the challenges they face, and the opportunities they present. Second, we explore the PCMCI method with an implementation on both synthetic and real-world data. The results of this work found in applying causal discovery in real physiological signals data may provide insights into the prospects and difficulties of causal structure search in healthcare Big Data and, moreover, the advantages of using causal models in prediction.Coelho, LuísFraunhofer, Vitor RollaFraunhofer, Vânia GuimarãesRepositório Científico do Instituto Politécnico do PortoAlmeida, Fernanda Ribeiro de2023-01-17T09:57:01Z2022-07-012022-07-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10400.22/21571TID:203147472enginfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-03-13T13:17:28Zoai:recipp.ipp.pt:10400.22/21571Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T17:41:38.019383Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Causal discovery from time series data
title Causal discovery from time series data
spellingShingle Causal discovery from time series data
Almeida, Fernanda Ribeiro de
Causal discovery
Causal relations
Time-series data
Physiological signals
MIMIC III
title_short Causal discovery from time series data
title_full Causal discovery from time series data
title_fullStr Causal discovery from time series data
title_full_unstemmed Causal discovery from time series data
title_sort Causal discovery from time series data
author Almeida, Fernanda Ribeiro de
author_facet Almeida, Fernanda Ribeiro de
author_role author
dc.contributor.none.fl_str_mv Coelho, Luís
Fraunhofer, Vitor Rolla
Fraunhofer, Vânia Guimarães
Repositório Científico do Instituto Politécnico do Porto
dc.contributor.author.fl_str_mv Almeida, Fernanda Ribeiro de
dc.subject.por.fl_str_mv Causal discovery
Causal relations
Time-series data
Physiological signals
MIMIC III
topic Causal discovery
Causal relations
Time-series data
Physiological signals
MIMIC III
description The drive to understand the laws that govern the universe and ourselves in order to expand our view of reality is deeply rooted in humanity. In science, this urge is a robust process filled with challenges and opportunities given the rapidly growing technology-driven volume of time series data. Causal discovery supports science in an innovative and fast-growing manner with the essential goal of uncovering mathematical orders directly from observational data translated into causal association networks. This scientific tool pledges to accelerate growth in various fields, including life sciences. This work approaches the topic of causal discovery on two levels. First, we address the theory of constraint-based methods on detecting and quantifying causal relations, covering how the methods work, the challenges they face, and the opportunities they present. Second, we explore the PCMCI method with an implementation on both synthetic and real-world data. The results of this work found in applying causal discovery in real physiological signals data may provide insights into the prospects and difficulties of causal structure search in healthcare Big Data and, moreover, the advantages of using causal models in prediction.
publishDate 2022
dc.date.none.fl_str_mv 2022-07-01
2022-07-01T00:00:00Z
2023-01-17T09:57:01Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10400.22/21571
TID:203147472
url http://hdl.handle.net/10400.22/21571
identifier_str_mv TID:203147472
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799131503820537856