Causal discovery from time series data
Autor(a) principal: | |
---|---|
Data de Publicação: | 2022 |
Tipo de documento: | Dissertação |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10400.22/21571 |
Resumo: | The drive to understand the laws that govern the universe and ourselves in order to expand our view of reality is deeply rooted in humanity. In science, this urge is a robust process filled with challenges and opportunities given the rapidly growing technology-driven volume of time series data. Causal discovery supports science in an innovative and fast-growing manner with the essential goal of uncovering mathematical orders directly from observational data translated into causal association networks. This scientific tool pledges to accelerate growth in various fields, including life sciences. This work approaches the topic of causal discovery on two levels. First, we address the theory of constraint-based methods on detecting and quantifying causal relations, covering how the methods work, the challenges they face, and the opportunities they present. Second, we explore the PCMCI method with an implementation on both synthetic and real-world data. The results of this work found in applying causal discovery in real physiological signals data may provide insights into the prospects and difficulties of causal structure search in healthcare Big Data and, moreover, the advantages of using causal models in prediction. |
id |
RCAP_9bde95ae905413b3b6549bdb75b58782 |
---|---|
oai_identifier_str |
oai:recipp.ipp.pt:10400.22/21571 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Causal discovery from time series dataCausal discoveryCausal relationsTime-series dataPhysiological signalsMIMIC IIIThe drive to understand the laws that govern the universe and ourselves in order to expand our view of reality is deeply rooted in humanity. In science, this urge is a robust process filled with challenges and opportunities given the rapidly growing technology-driven volume of time series data. Causal discovery supports science in an innovative and fast-growing manner with the essential goal of uncovering mathematical orders directly from observational data translated into causal association networks. This scientific tool pledges to accelerate growth in various fields, including life sciences. This work approaches the topic of causal discovery on two levels. First, we address the theory of constraint-based methods on detecting and quantifying causal relations, covering how the methods work, the challenges they face, and the opportunities they present. Second, we explore the PCMCI method with an implementation on both synthetic and real-world data. The results of this work found in applying causal discovery in real physiological signals data may provide insights into the prospects and difficulties of causal structure search in healthcare Big Data and, moreover, the advantages of using causal models in prediction.Coelho, LuísFraunhofer, Vitor RollaFraunhofer, Vânia GuimarãesRepositório Científico do Instituto Politécnico do PortoAlmeida, Fernanda Ribeiro de2023-01-17T09:57:01Z2022-07-012022-07-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10400.22/21571TID:203147472enginfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-03-13T13:17:28Zoai:recipp.ipp.pt:10400.22/21571Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T17:41:38.019383Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Causal discovery from time series data |
title |
Causal discovery from time series data |
spellingShingle |
Causal discovery from time series data Almeida, Fernanda Ribeiro de Causal discovery Causal relations Time-series data Physiological signals MIMIC III |
title_short |
Causal discovery from time series data |
title_full |
Causal discovery from time series data |
title_fullStr |
Causal discovery from time series data |
title_full_unstemmed |
Causal discovery from time series data |
title_sort |
Causal discovery from time series data |
author |
Almeida, Fernanda Ribeiro de |
author_facet |
Almeida, Fernanda Ribeiro de |
author_role |
author |
dc.contributor.none.fl_str_mv |
Coelho, Luís Fraunhofer, Vitor Rolla Fraunhofer, Vânia Guimarães Repositório Científico do Instituto Politécnico do Porto |
dc.contributor.author.fl_str_mv |
Almeida, Fernanda Ribeiro de |
dc.subject.por.fl_str_mv |
Causal discovery Causal relations Time-series data Physiological signals MIMIC III |
topic |
Causal discovery Causal relations Time-series data Physiological signals MIMIC III |
description |
The drive to understand the laws that govern the universe and ourselves in order to expand our view of reality is deeply rooted in humanity. In science, this urge is a robust process filled with challenges and opportunities given the rapidly growing technology-driven volume of time series data. Causal discovery supports science in an innovative and fast-growing manner with the essential goal of uncovering mathematical orders directly from observational data translated into causal association networks. This scientific tool pledges to accelerate growth in various fields, including life sciences. This work approaches the topic of causal discovery on two levels. First, we address the theory of constraint-based methods on detecting and quantifying causal relations, covering how the methods work, the challenges they face, and the opportunities they present. Second, we explore the PCMCI method with an implementation on both synthetic and real-world data. The results of this work found in applying causal discovery in real physiological signals data may provide insights into the prospects and difficulties of causal structure search in healthcare Big Data and, moreover, the advantages of using causal models in prediction. |
publishDate |
2022 |
dc.date.none.fl_str_mv |
2022-07-01 2022-07-01T00:00:00Z 2023-01-17T09:57:01Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10400.22/21571 TID:203147472 |
url |
http://hdl.handle.net/10400.22/21571 |
identifier_str_mv |
TID:203147472 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799131503820537856 |