Time-fractional telegraph equation of distributed order in higher dimensions
Autor(a) principal: | |
---|---|
Data de Publicação: | 2021 |
Outros Autores: | , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10400.8/7512 |
Resumo: | In this work, the Cauchy problem for the time-fractional telegraph equation of distributed order in Rn is considered. By employing the technique of the Fourier, Laplace, and Mellin transforms, a representation of the fundamental solution of this equation in terms of convolutions involving the Fox H-function is obtained. Some particular choices of the density functions in the form of elementary functions are studied. Fractional moments of the fundamental solution are computed in the Laplace domain. Finally, by application of the Tauberian theorems we study the asymptotic behaviour of the second-order moment (variance) in the time domain. |
id |
RCAP_9c060121bd479bd4c7259697a22cb26c |
---|---|
oai_identifier_str |
oai:iconline.ipleiria.pt:10400.8/7512 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Time-fractional telegraph equation of distributed order in higher dimensionsTime-fractional telegraph equationDistributed orderLaplace, Fourier and Mellin transformsFox H-functionsFractional momentsTauberian theoremsIn this work, the Cauchy problem for the time-fractional telegraph equation of distributed order in Rn is considered. By employing the technique of the Fourier, Laplace, and Mellin transforms, a representation of the fundamental solution of this equation in terms of convolutions involving the Fox H-function is obtained. Some particular choices of the density functions in the form of elementary functions are studied. Fractional moments of the fundamental solution are computed in the Laplace domain. Finally, by application of the Tauberian theorems we study the asymptotic behaviour of the second-order moment (variance) in the time domain.ElsevierIC-OnlineVieira, NelsonRodrigues, M. ManuelaFerreira, Milton2023-11-04T01:30:19Z2021-112021-11-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10400.8/7512engN. Vieira, M.M. Rodrigues, and M. Ferreira, Time-fractional telegraph equation of distributed order in higher dimensions, Commun. Nonlinear Sci. Numer. Simul., Vol. 102, 2021, Page: 10592510.1016/j.cnsns.2021.105925info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-01-17T15:55:19Zoai:iconline.ipleiria.pt:10400.8/7512Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T01:50:27.270550Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Time-fractional telegraph equation of distributed order in higher dimensions |
title |
Time-fractional telegraph equation of distributed order in higher dimensions |
spellingShingle |
Time-fractional telegraph equation of distributed order in higher dimensions Vieira, Nelson Time-fractional telegraph equation Distributed order Laplace, Fourier and Mellin transforms Fox H-functions Fractional moments Tauberian theorems |
title_short |
Time-fractional telegraph equation of distributed order in higher dimensions |
title_full |
Time-fractional telegraph equation of distributed order in higher dimensions |
title_fullStr |
Time-fractional telegraph equation of distributed order in higher dimensions |
title_full_unstemmed |
Time-fractional telegraph equation of distributed order in higher dimensions |
title_sort |
Time-fractional telegraph equation of distributed order in higher dimensions |
author |
Vieira, Nelson |
author_facet |
Vieira, Nelson Rodrigues, M. Manuela Ferreira, Milton |
author_role |
author |
author2 |
Rodrigues, M. Manuela Ferreira, Milton |
author2_role |
author author |
dc.contributor.none.fl_str_mv |
IC-Online |
dc.contributor.author.fl_str_mv |
Vieira, Nelson Rodrigues, M. Manuela Ferreira, Milton |
dc.subject.por.fl_str_mv |
Time-fractional telegraph equation Distributed order Laplace, Fourier and Mellin transforms Fox H-functions Fractional moments Tauberian theorems |
topic |
Time-fractional telegraph equation Distributed order Laplace, Fourier and Mellin transforms Fox H-functions Fractional moments Tauberian theorems |
description |
In this work, the Cauchy problem for the time-fractional telegraph equation of distributed order in Rn is considered. By employing the technique of the Fourier, Laplace, and Mellin transforms, a representation of the fundamental solution of this equation in terms of convolutions involving the Fox H-function is obtained. Some particular choices of the density functions in the form of elementary functions are studied. Fractional moments of the fundamental solution are computed in the Laplace domain. Finally, by application of the Tauberian theorems we study the asymptotic behaviour of the second-order moment (variance) in the time domain. |
publishDate |
2021 |
dc.date.none.fl_str_mv |
2021-11 2021-11-01T00:00:00Z 2023-11-04T01:30:19Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10400.8/7512 |
url |
http://hdl.handle.net/10400.8/7512 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
N. Vieira, M.M. Rodrigues, and M. Ferreira, Time-fractional telegraph equation of distributed order in higher dimensions, Commun. Nonlinear Sci. Numer. Simul., Vol. 102, 2021, Page: 105925 10.1016/j.cnsns.2021.105925 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier |
publisher.none.fl_str_mv |
Elsevier |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799136997028134912 |