Time-fractional telegraph equation of distributed order in higher dimensions with Hilfer fractional derivatives
Autor(a) principal: | |
---|---|
Data de Publicação: | 2022 |
Outros Autores: | , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10773/35006 |
Resumo: | In this paper, we consider the time-fractional telegraph equation of distributed order in higher spatial dimensions, where the time derivative is in the sense of Hilfer, thus interpolating between the Riemann-Liouville and the Caputo fractional derivatives. By employing the techniques of the Fourier, Laplace, and Mellin transforms, we obtain a representation of the solution of the Cauchy problem associated with the equation in terms of convolutions involving functions that are Laplace integrals of Fox H-functions. Fractional moments of the first fundamental solution are computed and for the special case of double-order distributed it is analyzed in detail the asymptotic behavior of the second-order moment, by application of the Tauberian Theorem. Finally, we exhibit plots of the variance showing its behavior for short and long times, and for different choices of the parameters along small dimensions. |
id |
RCAP_ee40eeaedd3dd15baf6d95cec4a906cb |
---|---|
oai_identifier_str |
oai:ria.ua.pt:10773/35006 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Time-fractional telegraph equation of distributed order in higher dimensions with Hilfer fractional derivativesTime-fractional telegraph equationDistributed orderHilfer fractional derivativeIntegral transformsFox H-functionFractional momentsTauberian TheoremIn this paper, we consider the time-fractional telegraph equation of distributed order in higher spatial dimensions, where the time derivative is in the sense of Hilfer, thus interpolating between the Riemann-Liouville and the Caputo fractional derivatives. By employing the techniques of the Fourier, Laplace, and Mellin transforms, we obtain a representation of the solution of the Cauchy problem associated with the equation in terms of convolutions involving functions that are Laplace integrals of Fox H-functions. Fractional moments of the first fundamental solution are computed and for the special case of double-order distributed it is analyzed in detail the asymptotic behavior of the second-order moment, by application of the Tauberian Theorem. Finally, we exhibit plots of the variance showing its behavior for short and long times, and for different choices of the parameters along small dimensions.AIMS Press2022-10-26T14:37:30Z2022-07-29T00:00:00Z2022-07-29info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10773/35006eng2688-159410.3934/era.2022184Vieira, N.Rodrigues, M. M.Ferreira, M.info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-05-06T04:39:10Zoai:ria.ua.pt:10773/35006Portal AgregadorONGhttps://www.rcaap.pt/oai/openairemluisa.alvim@gmail.comopendoar:71602024-05-06T04:39:10Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Time-fractional telegraph equation of distributed order in higher dimensions with Hilfer fractional derivatives |
title |
Time-fractional telegraph equation of distributed order in higher dimensions with Hilfer fractional derivatives |
spellingShingle |
Time-fractional telegraph equation of distributed order in higher dimensions with Hilfer fractional derivatives Vieira, N. Time-fractional telegraph equation Distributed order Hilfer fractional derivative Integral transforms Fox H-function Fractional moments Tauberian Theorem |
title_short |
Time-fractional telegraph equation of distributed order in higher dimensions with Hilfer fractional derivatives |
title_full |
Time-fractional telegraph equation of distributed order in higher dimensions with Hilfer fractional derivatives |
title_fullStr |
Time-fractional telegraph equation of distributed order in higher dimensions with Hilfer fractional derivatives |
title_full_unstemmed |
Time-fractional telegraph equation of distributed order in higher dimensions with Hilfer fractional derivatives |
title_sort |
Time-fractional telegraph equation of distributed order in higher dimensions with Hilfer fractional derivatives |
author |
Vieira, N. |
author_facet |
Vieira, N. Rodrigues, M. M. Ferreira, M. |
author_role |
author |
author2 |
Rodrigues, M. M. Ferreira, M. |
author2_role |
author author |
dc.contributor.author.fl_str_mv |
Vieira, N. Rodrigues, M. M. Ferreira, M. |
dc.subject.por.fl_str_mv |
Time-fractional telegraph equation Distributed order Hilfer fractional derivative Integral transforms Fox H-function Fractional moments Tauberian Theorem |
topic |
Time-fractional telegraph equation Distributed order Hilfer fractional derivative Integral transforms Fox H-function Fractional moments Tauberian Theorem |
description |
In this paper, we consider the time-fractional telegraph equation of distributed order in higher spatial dimensions, where the time derivative is in the sense of Hilfer, thus interpolating between the Riemann-Liouville and the Caputo fractional derivatives. By employing the techniques of the Fourier, Laplace, and Mellin transforms, we obtain a representation of the solution of the Cauchy problem associated with the equation in terms of convolutions involving functions that are Laplace integrals of Fox H-functions. Fractional moments of the first fundamental solution are computed and for the special case of double-order distributed it is analyzed in detail the asymptotic behavior of the second-order moment, by application of the Tauberian Theorem. Finally, we exhibit plots of the variance showing its behavior for short and long times, and for different choices of the parameters along small dimensions. |
publishDate |
2022 |
dc.date.none.fl_str_mv |
2022-10-26T14:37:30Z 2022-07-29T00:00:00Z 2022-07-29 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10773/35006 |
url |
http://hdl.handle.net/10773/35006 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
2688-1594 10.3934/era.2022184 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
AIMS Press |
publisher.none.fl_str_mv |
AIMS Press |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
mluisa.alvim@gmail.com |
_version_ |
1817543820405899264 |