Discretisations of higher order and the theorems of
Autor(a) principal: | |
---|---|
Data de Publicação: | 2013 |
Tipo de documento: | Artigo |
Idioma: | por |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10174/9637 |
Resumo: | We study discrete functions on equidistant and nonequidistant infinitesimal grids. We consider their difference quotients of higher order and give conditions for their nearequality to the corresponding derivatives. Important tools are nonstandard notions of regularity of higher order, and the formula of Fa`a di Bruno for higher order derivatives and a iscrete version of it. As an application of such transitions from the discrete to the continuous we extend the DeMoivreLaplace Theorem to higher order: nth order difference quotients of the binomial probability distribution tend to the corresponding nth order partial differential quotients of the Gaussian distribution. |
id |
RCAP_9cd3969ff129584372a0212eaf8eb408 |
---|---|
oai_identifier_str |
oai:dspace.uevora.pt:10174/9637 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Discretisations of higher order and the theorems ofDifference quotientsChain ruleFa`a di Bruno TheoremDeMoivreLaplacenonstandard analysisWe study discrete functions on equidistant and nonequidistant infinitesimal grids. We consider their difference quotients of higher order and give conditions for their nearequality to the corresponding derivatives. Important tools are nonstandard notions of regularity of higher order, and the formula of Fa`a di Bruno for higher order derivatives and a iscrete version of it. As an application of such transitions from the discrete to the continuous we extend the DeMoivreLaplace Theorem to higher order: nth order difference quotients of the binomial probability distribution tend to the corresponding nth order partial differential quotients of the Gaussian distribution.Association of Symbolic Logic2014-01-15T11:43:31Z2014-01-152013-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlehttp://hdl.handle.net/10174/9637http://hdl.handle.net/10174/9637porImme van den Berg, Discretisations of higher order and the theorems of Fa`a di Bruno and DeMoivreLaplace, Journal of Logic & Analysis 5:6 (2013) 1–35 ISSN 175990081759-9008http://logicandanalysis.org/index.php/jla/article/viewFile/173/87ivdb@uevora.pt334Van den Berg, Immeinfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-01-03T18:51:41Zoai:dspace.uevora.pt:10174/9637Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T01:03:39.437232Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Discretisations of higher order and the theorems of |
title |
Discretisations of higher order and the theorems of |
spellingShingle |
Discretisations of higher order and the theorems of Van den Berg, Imme Difference quotients Chain rule Fa`a di Bruno Theorem DeMoivreLaplace nonstandard analysis |
title_short |
Discretisations of higher order and the theorems of |
title_full |
Discretisations of higher order and the theorems of |
title_fullStr |
Discretisations of higher order and the theorems of |
title_full_unstemmed |
Discretisations of higher order and the theorems of |
title_sort |
Discretisations of higher order and the theorems of |
author |
Van den Berg, Imme |
author_facet |
Van den Berg, Imme |
author_role |
author |
dc.contributor.author.fl_str_mv |
Van den Berg, Imme |
dc.subject.por.fl_str_mv |
Difference quotients Chain rule Fa`a di Bruno Theorem DeMoivreLaplace nonstandard analysis |
topic |
Difference quotients Chain rule Fa`a di Bruno Theorem DeMoivreLaplace nonstandard analysis |
description |
We study discrete functions on equidistant and nonequidistant infinitesimal grids. We consider their difference quotients of higher order and give conditions for their nearequality to the corresponding derivatives. Important tools are nonstandard notions of regularity of higher order, and the formula of Fa`a di Bruno for higher order derivatives and a iscrete version of it. As an application of such transitions from the discrete to the continuous we extend the DeMoivreLaplace Theorem to higher order: nth order difference quotients of the binomial probability distribution tend to the corresponding nth order partial differential quotients of the Gaussian distribution. |
publishDate |
2013 |
dc.date.none.fl_str_mv |
2013-01-01T00:00:00Z 2014-01-15T11:43:31Z 2014-01-15 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10174/9637 http://hdl.handle.net/10174/9637 |
url |
http://hdl.handle.net/10174/9637 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.relation.none.fl_str_mv |
Imme van den Berg, Discretisations of higher order and the theorems of Fa`a di Bruno and DeMoivreLaplace, Journal of Logic & Analysis 5:6 (2013) 1–35 ISSN 17599008 1759-9008 http://logicandanalysis.org/index.php/jla/article/viewFile/173/87 ivdb@uevora.pt 334 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.publisher.none.fl_str_mv |
Association of Symbolic Logic |
publisher.none.fl_str_mv |
Association of Symbolic Logic |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799136520671592448 |