A DeMoivre-Laplace theorem of all orders of regularity
Autor(a) principal: | |
---|---|
Data de Publicação: | 2007 |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10174/1396 |
Resumo: | The DeMoivre-Laplace Theorem states that the binomial probability distribution B(N; 1/2) tends for N to infinity to the Gaussian distribution. We extend this theorem to the difference quotients of the family of the binomial distributions with varying N, showing that they converge to the corresponding differential quotients of the time-dependent Gaussian distribution. The convergence holds for difference quotients of all order. |
id |
RCAP_cfb52bb64a9f2fd7c905a1b608b4aa9a |
---|---|
oai_identifier_str |
oai:dspace.uevora.pt:10174/1396 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
A DeMoivre-Laplace theorem of all orders of regularityBinomial distributionDeMoivre-Laplace TheoremPascal TriangleGaussian distributiondifference quotientsdiscrete heat equationnonstandard analysisThe DeMoivre-Laplace Theorem states that the binomial probability distribution B(N; 1/2) tends for N to infinity to the Gaussian distribution. We extend this theorem to the difference quotients of the family of the binomial distributions with varying N, showing that they converge to the corresponding differential quotients of the time-dependent Gaussian distribution. The convergence holds for difference quotients of all order.Shaker Publishing, Maastricht/Aachen2008-12-30T16:26:21Z2008-12-302007-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article30216 bytesapplication/pdfhttp://hdl.handle.net/10174/1396http://hdl.handle.net/10174/1396engp. 335-360livreivdb@uevora.ptCommunications of the Laufen Colloquium on Science 2007, A. Ruffing, A. Suhrer, J. Suhrer (Eds.)340van den Berg, Immeinfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-01-03T18:37:29Zoai:dspace.uevora.pt:10174/1396Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T00:57:32.564998Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
A DeMoivre-Laplace theorem of all orders of regularity |
title |
A DeMoivre-Laplace theorem of all orders of regularity |
spellingShingle |
A DeMoivre-Laplace theorem of all orders of regularity van den Berg, Imme Binomial distribution DeMoivre-Laplace Theorem Pascal Triangle Gaussian distribution difference quotients discrete heat equation nonstandard analysis |
title_short |
A DeMoivre-Laplace theorem of all orders of regularity |
title_full |
A DeMoivre-Laplace theorem of all orders of regularity |
title_fullStr |
A DeMoivre-Laplace theorem of all orders of regularity |
title_full_unstemmed |
A DeMoivre-Laplace theorem of all orders of regularity |
title_sort |
A DeMoivre-Laplace theorem of all orders of regularity |
author |
van den Berg, Imme |
author_facet |
van den Berg, Imme |
author_role |
author |
dc.contributor.author.fl_str_mv |
van den Berg, Imme |
dc.subject.por.fl_str_mv |
Binomial distribution DeMoivre-Laplace Theorem Pascal Triangle Gaussian distribution difference quotients discrete heat equation nonstandard analysis |
topic |
Binomial distribution DeMoivre-Laplace Theorem Pascal Triangle Gaussian distribution difference quotients discrete heat equation nonstandard analysis |
description |
The DeMoivre-Laplace Theorem states that the binomial probability distribution B(N; 1/2) tends for N to infinity to the Gaussian distribution. We extend this theorem to the difference quotients of the family of the binomial distributions with varying N, showing that they converge to the corresponding differential quotients of the time-dependent Gaussian distribution. The convergence holds for difference quotients of all order. |
publishDate |
2007 |
dc.date.none.fl_str_mv |
2007-01-01T00:00:00Z 2008-12-30T16:26:21Z 2008-12-30 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10174/1396 http://hdl.handle.net/10174/1396 |
url |
http://hdl.handle.net/10174/1396 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
p. 335-360 livre ivdb@uevora.pt Communications of the Laufen Colloquium on Science 2007, A. Ruffing, A. Suhrer, J. Suhrer (Eds.) 340 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
30216 bytes application/pdf |
dc.publisher.none.fl_str_mv |
Shaker Publishing, Maastricht/Aachen |
publisher.none.fl_str_mv |
Shaker Publishing, Maastricht/Aachen |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799136459613011968 |