Generating the algebraic theory of C(X): The case of partially ordered compact spaces
Autor(a) principal: | |
---|---|
Data de Publicação: | 2018 |
Outros Autores: | , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://repositorio.inesctec.pt/handle/123456789/10523 |
Resumo: | It is known since the late 1960’s that the dual of the category of compact Hausdorff spaces and continuous maps is a variety-not ffnitary, but bounded by ?1. In this note we show that the dual of the category of partially ordered compact spaces and monotone continuous maps is an ?1-ary quasivariety, and describe partially its algebraic theory. Based on this description, we extend these results to categories of Vietoris coalgebras and homomorphisms on ordered compact spaces. We also characterise the ?1-copresentable partially ordered compact spaces. © Dirk Hofmann, Renato Neves, and Pedro Nora, 2018. |
id |
RCAP_9d184d03ed66f7e2533cec43ce4bd214 |
---|---|
oai_identifier_str |
oai:repositorio.inesctec.pt:123456789/10523 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Generating the algebraic theory of C(X): The case of partially ordered compact spacesIt is known since the late 1960’s that the dual of the category of compact Hausdorff spaces and continuous maps is a variety-not ffnitary, but bounded by ?1. In this note we show that the dual of the category of partially ordered compact spaces and monotone continuous maps is an ?1-ary quasivariety, and describe partially its algebraic theory. Based on this description, we extend these results to categories of Vietoris coalgebras and homomorphisms on ordered compact spaces. We also characterise the ?1-copresentable partially ordered compact spaces. © Dirk Hofmann, Renato Neves, and Pedro Nora, 2018.2019-12-14T16:49:52Z2018-01-01T00:00:00Z2018info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://repositorio.inesctec.pt/handle/123456789/10523engHofmann,DNora,PRenato Jorge Nevesinfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-05-15T10:20:15Zoai:repositorio.inesctec.pt:123456789/10523Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T17:52:53.302289Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Generating the algebraic theory of C(X): The case of partially ordered compact spaces |
title |
Generating the algebraic theory of C(X): The case of partially ordered compact spaces |
spellingShingle |
Generating the algebraic theory of C(X): The case of partially ordered compact spaces Hofmann,D |
title_short |
Generating the algebraic theory of C(X): The case of partially ordered compact spaces |
title_full |
Generating the algebraic theory of C(X): The case of partially ordered compact spaces |
title_fullStr |
Generating the algebraic theory of C(X): The case of partially ordered compact spaces |
title_full_unstemmed |
Generating the algebraic theory of C(X): The case of partially ordered compact spaces |
title_sort |
Generating the algebraic theory of C(X): The case of partially ordered compact spaces |
author |
Hofmann,D |
author_facet |
Hofmann,D Nora,P Renato Jorge Neves |
author_role |
author |
author2 |
Nora,P Renato Jorge Neves |
author2_role |
author author |
dc.contributor.author.fl_str_mv |
Hofmann,D Nora,P Renato Jorge Neves |
description |
It is known since the late 1960’s that the dual of the category of compact Hausdorff spaces and continuous maps is a variety-not ffnitary, but bounded by ?1. In this note we show that the dual of the category of partially ordered compact spaces and monotone continuous maps is an ?1-ary quasivariety, and describe partially its algebraic theory. Based on this description, we extend these results to categories of Vietoris coalgebras and homomorphisms on ordered compact spaces. We also characterise the ?1-copresentable partially ordered compact spaces. © Dirk Hofmann, Renato Neves, and Pedro Nora, 2018. |
publishDate |
2018 |
dc.date.none.fl_str_mv |
2018-01-01T00:00:00Z 2018 2019-12-14T16:49:52Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://repositorio.inesctec.pt/handle/123456789/10523 |
url |
http://repositorio.inesctec.pt/handle/123456789/10523 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799131604159823873 |