Bottom up proteomics data analysis strategies to explore protein modifications and genomic variant

Detalhes bibliográficos
Autor(a) principal: Carvalho, Ana
Data de Publicação: 2015
Outros Autores: Matthiesen, Rune, Penque, Deborah
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10400.18/3458
Resumo: The quest to understand biological systems requires further attention of the scientific community to the challenges faced in proteomics. In fact the complexity of the proteome reaches uncountable orders of magnitudes. This means that significant technical and data-analytic innovations will be needed for the full understanding of biology. Current state of art mass spectrometry (MS) is probably our best choice for studying protein complexity and exploring new ways to use MS and MS derived data should be given higher priority. We present here a brief overview of visualization and statistical analyzes strategies for quantitative peptide values on an individual protein basis. These analysis strategies can help pinpoint protein modifications, splice and genomic variants of biological relevance. We demonstrated the application of these data analysis strategies using a bottom-up proteomics data set obtained in a drug profiling experiment. Furthermore, we have also observed that the presented methods are useful for studying peptide distributions from clinical proteomics samples from a large number of individuals. We expect that the presented data analysis strategy will be useful in the future to define functional protein variants in biological model systems and disease studies. Therefore robust software implementing these strategies is urgently needed.
id RCAP_9e5d873874822e480993450d671a7049
oai_identifier_str oai:repositorio.insa.pt:10400.18/3458
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Bottom up proteomics data analysis strategies to explore protein modifications and genomic variantBioinformaticsComputational MSData VisualizationProteoformsPeptide QuantitationProteogenomicsProteómicaGenómica FuncionalGenómica Funcional e EstruturalThe quest to understand biological systems requires further attention of the scientific community to the challenges faced in proteomics. In fact the complexity of the proteome reaches uncountable orders of magnitudes. This means that significant technical and data-analytic innovations will be needed for the full understanding of biology. Current state of art mass spectrometry (MS) is probably our best choice for studying protein complexity and exploring new ways to use MS and MS derived data should be given higher priority. We present here a brief overview of visualization and statistical analyzes strategies for quantitative peptide values on an individual protein basis. These analysis strategies can help pinpoint protein modifications, splice and genomic variants of biological relevance. We demonstrated the application of these data analysis strategies using a bottom-up proteomics data set obtained in a drug profiling experiment. Furthermore, we have also observed that the presented methods are useful for studying peptide distributions from clinical proteomics samples from a large number of individuals. We expect that the presented data analysis strategy will be useful in the future to define functional protein variants in biological model systems and disease studies. Therefore robust software implementing these strategies is urgently needed.R.M. is supported by EXPL/DTP-PIC/0616/2013 Fundação para a Ciência e a Tecnologia (FCT) and FCT investigator program 2012. A.S.C. is supported by post-doctoral grant reference SFRH / BPD / 85569 / 2012 funded by FCT.Wiley-VCH VerlagRepositório Científico do Instituto Nacional de SaúdeCarvalho, AnaMatthiesen, RunePenque, Deborah2018-01-01T01:30:10Z2015-062015-06-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfapplication/pdfhttp://hdl.handle.net/10400.18/3458engProteomics. 2015 Jun;15(11):1789-92. doi: 10.1002/pmic.201400186. Epub 2015 Mar 30.1615-985310.1002/pmic.201400186info:eu-repo/semantics/embargoedAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-07-20T15:39:55Zoai:repositorio.insa.pt:10400.18/3458Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T18:38:30.538351Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Bottom up proteomics data analysis strategies to explore protein modifications and genomic variant
title Bottom up proteomics data analysis strategies to explore protein modifications and genomic variant
spellingShingle Bottom up proteomics data analysis strategies to explore protein modifications and genomic variant
Carvalho, Ana
Bioinformatics
Computational MS
Data Visualization
Proteoforms
Peptide Quantitation
Proteogenomics
Proteómica
Genómica Funcional
Genómica Funcional e Estrutural
title_short Bottom up proteomics data analysis strategies to explore protein modifications and genomic variant
title_full Bottom up proteomics data analysis strategies to explore protein modifications and genomic variant
title_fullStr Bottom up proteomics data analysis strategies to explore protein modifications and genomic variant
title_full_unstemmed Bottom up proteomics data analysis strategies to explore protein modifications and genomic variant
title_sort Bottom up proteomics data analysis strategies to explore protein modifications and genomic variant
author Carvalho, Ana
author_facet Carvalho, Ana
Matthiesen, Rune
Penque, Deborah
author_role author
author2 Matthiesen, Rune
Penque, Deborah
author2_role author
author
dc.contributor.none.fl_str_mv Repositório Científico do Instituto Nacional de Saúde
dc.contributor.author.fl_str_mv Carvalho, Ana
Matthiesen, Rune
Penque, Deborah
dc.subject.por.fl_str_mv Bioinformatics
Computational MS
Data Visualization
Proteoforms
Peptide Quantitation
Proteogenomics
Proteómica
Genómica Funcional
Genómica Funcional e Estrutural
topic Bioinformatics
Computational MS
Data Visualization
Proteoforms
Peptide Quantitation
Proteogenomics
Proteómica
Genómica Funcional
Genómica Funcional e Estrutural
description The quest to understand biological systems requires further attention of the scientific community to the challenges faced in proteomics. In fact the complexity of the proteome reaches uncountable orders of magnitudes. This means that significant technical and data-analytic innovations will be needed for the full understanding of biology. Current state of art mass spectrometry (MS) is probably our best choice for studying protein complexity and exploring new ways to use MS and MS derived data should be given higher priority. We present here a brief overview of visualization and statistical analyzes strategies for quantitative peptide values on an individual protein basis. These analysis strategies can help pinpoint protein modifications, splice and genomic variants of biological relevance. We demonstrated the application of these data analysis strategies using a bottom-up proteomics data set obtained in a drug profiling experiment. Furthermore, we have also observed that the presented methods are useful for studying peptide distributions from clinical proteomics samples from a large number of individuals. We expect that the presented data analysis strategy will be useful in the future to define functional protein variants in biological model systems and disease studies. Therefore robust software implementing these strategies is urgently needed.
publishDate 2015
dc.date.none.fl_str_mv 2015-06
2015-06-01T00:00:00Z
2018-01-01T01:30:10Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10400.18/3458
url http://hdl.handle.net/10400.18/3458
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv Proteomics. 2015 Jun;15(11):1789-92. doi: 10.1002/pmic.201400186. Epub 2015 Mar 30.
1615-9853
10.1002/pmic.201400186
dc.rights.driver.fl_str_mv info:eu-repo/semantics/embargoedAccess
eu_rights_str_mv embargoedAccess
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Wiley-VCH Verlag
publisher.none.fl_str_mv Wiley-VCH Verlag
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799132122635567104