Bottom up proteomics data analysis strategies to explore protein modifications and genomic variant
Autor(a) principal: | |
---|---|
Data de Publicação: | 2015 |
Outros Autores: | , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10400.18/3458 |
Resumo: | The quest to understand biological systems requires further attention of the scientific community to the challenges faced in proteomics. In fact the complexity of the proteome reaches uncountable orders of magnitudes. This means that significant technical and data-analytic innovations will be needed for the full understanding of biology. Current state of art mass spectrometry (MS) is probably our best choice for studying protein complexity and exploring new ways to use MS and MS derived data should be given higher priority. We present here a brief overview of visualization and statistical analyzes strategies for quantitative peptide values on an individual protein basis. These analysis strategies can help pinpoint protein modifications, splice and genomic variants of biological relevance. We demonstrated the application of these data analysis strategies using a bottom-up proteomics data set obtained in a drug profiling experiment. Furthermore, we have also observed that the presented methods are useful for studying peptide distributions from clinical proteomics samples from a large number of individuals. We expect that the presented data analysis strategy will be useful in the future to define functional protein variants in biological model systems and disease studies. Therefore robust software implementing these strategies is urgently needed. |
id |
RCAP_9e5d873874822e480993450d671a7049 |
---|---|
oai_identifier_str |
oai:repositorio.insa.pt:10400.18/3458 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Bottom up proteomics data analysis strategies to explore protein modifications and genomic variantBioinformaticsComputational MSData VisualizationProteoformsPeptide QuantitationProteogenomicsProteómicaGenómica FuncionalGenómica Funcional e EstruturalThe quest to understand biological systems requires further attention of the scientific community to the challenges faced in proteomics. In fact the complexity of the proteome reaches uncountable orders of magnitudes. This means that significant technical and data-analytic innovations will be needed for the full understanding of biology. Current state of art mass spectrometry (MS) is probably our best choice for studying protein complexity and exploring new ways to use MS and MS derived data should be given higher priority. We present here a brief overview of visualization and statistical analyzes strategies for quantitative peptide values on an individual protein basis. These analysis strategies can help pinpoint protein modifications, splice and genomic variants of biological relevance. We demonstrated the application of these data analysis strategies using a bottom-up proteomics data set obtained in a drug profiling experiment. Furthermore, we have also observed that the presented methods are useful for studying peptide distributions from clinical proteomics samples from a large number of individuals. We expect that the presented data analysis strategy will be useful in the future to define functional protein variants in biological model systems and disease studies. Therefore robust software implementing these strategies is urgently needed.R.M. is supported by EXPL/DTP-PIC/0616/2013 Fundação para a Ciência e a Tecnologia (FCT) and FCT investigator program 2012. A.S.C. is supported by post-doctoral grant reference SFRH / BPD / 85569 / 2012 funded by FCT.Wiley-VCH VerlagRepositório Científico do Instituto Nacional de SaúdeCarvalho, AnaMatthiesen, RunePenque, Deborah2018-01-01T01:30:10Z2015-062015-06-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfapplication/pdfhttp://hdl.handle.net/10400.18/3458engProteomics. 2015 Jun;15(11):1789-92. doi: 10.1002/pmic.201400186. Epub 2015 Mar 30.1615-985310.1002/pmic.201400186info:eu-repo/semantics/embargoedAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-07-20T15:39:55Zoai:repositorio.insa.pt:10400.18/3458Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T18:38:30.538351Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Bottom up proteomics data analysis strategies to explore protein modifications and genomic variant |
title |
Bottom up proteomics data analysis strategies to explore protein modifications and genomic variant |
spellingShingle |
Bottom up proteomics data analysis strategies to explore protein modifications and genomic variant Carvalho, Ana Bioinformatics Computational MS Data Visualization Proteoforms Peptide Quantitation Proteogenomics Proteómica Genómica Funcional Genómica Funcional e Estrutural |
title_short |
Bottom up proteomics data analysis strategies to explore protein modifications and genomic variant |
title_full |
Bottom up proteomics data analysis strategies to explore protein modifications and genomic variant |
title_fullStr |
Bottom up proteomics data analysis strategies to explore protein modifications and genomic variant |
title_full_unstemmed |
Bottom up proteomics data analysis strategies to explore protein modifications and genomic variant |
title_sort |
Bottom up proteomics data analysis strategies to explore protein modifications and genomic variant |
author |
Carvalho, Ana |
author_facet |
Carvalho, Ana Matthiesen, Rune Penque, Deborah |
author_role |
author |
author2 |
Matthiesen, Rune Penque, Deborah |
author2_role |
author author |
dc.contributor.none.fl_str_mv |
Repositório Científico do Instituto Nacional de Saúde |
dc.contributor.author.fl_str_mv |
Carvalho, Ana Matthiesen, Rune Penque, Deborah |
dc.subject.por.fl_str_mv |
Bioinformatics Computational MS Data Visualization Proteoforms Peptide Quantitation Proteogenomics Proteómica Genómica Funcional Genómica Funcional e Estrutural |
topic |
Bioinformatics Computational MS Data Visualization Proteoforms Peptide Quantitation Proteogenomics Proteómica Genómica Funcional Genómica Funcional e Estrutural |
description |
The quest to understand biological systems requires further attention of the scientific community to the challenges faced in proteomics. In fact the complexity of the proteome reaches uncountable orders of magnitudes. This means that significant technical and data-analytic innovations will be needed for the full understanding of biology. Current state of art mass spectrometry (MS) is probably our best choice for studying protein complexity and exploring new ways to use MS and MS derived data should be given higher priority. We present here a brief overview of visualization and statistical analyzes strategies for quantitative peptide values on an individual protein basis. These analysis strategies can help pinpoint protein modifications, splice and genomic variants of biological relevance. We demonstrated the application of these data analysis strategies using a bottom-up proteomics data set obtained in a drug profiling experiment. Furthermore, we have also observed that the presented methods are useful for studying peptide distributions from clinical proteomics samples from a large number of individuals. We expect that the presented data analysis strategy will be useful in the future to define functional protein variants in biological model systems and disease studies. Therefore robust software implementing these strategies is urgently needed. |
publishDate |
2015 |
dc.date.none.fl_str_mv |
2015-06 2015-06-01T00:00:00Z 2018-01-01T01:30:10Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10400.18/3458 |
url |
http://hdl.handle.net/10400.18/3458 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
Proteomics. 2015 Jun;15(11):1789-92. doi: 10.1002/pmic.201400186. Epub 2015 Mar 30. 1615-9853 10.1002/pmic.201400186 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/embargoedAccess |
eu_rights_str_mv |
embargoedAccess |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Wiley-VCH Verlag |
publisher.none.fl_str_mv |
Wiley-VCH Verlag |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799132122635567104 |