Identification of minimal metabolic pathway models consistent with phenotypic data
Autor(a) principal: | |
---|---|
Data de Publicação: | 2011 |
Outros Autores: | , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | https://hdl.handle.net/1822/16695 |
Resumo: | The cellular network of metabolic reactions, together with constraints of (ir)reversibility of enzymes, determines the space of all possible steady-state phenotypes. Analysis of large metabolic models, however, is not feasible in real-time and identification of a smaller model without loss of accuracy is desirable for model-based bioprocess optimization and control. To this end, we propose two search algorithms for systematic identification of a subset of pathways that match the observed cellular phenotype relevant for a particular process condition. Central carbon metabolism of Escherichia coli was used as a case-study together with three phenotypic datasets obtained from the literature. The first search method is based on ranking pathways and the second is a controlled random search (CRS) algorithm. Since we wish to obtain a biologically realistic subset of pathways, the objective function to be minimized is a trade-off between the error and investment costs. We found that the CRS outperforms the ranking algorithm, as it is less likely to fall into local minima. In addition, we compared two pathway analysis methods (elementary modes versus generating vectors) in terms of modelling accuracy and computational intensity. We conclude that generating vectors have preference over elementary modes to describe a particular phenotype. Overall, the original model containing 433 generating vectors or 2706 elementary modes could be reduced to a system of one to three pathways giving a good correlation with the measured datasets. We consider this work as a first step towards the use of detailed metabolic models to improve real-time optimization, monitoring, and control of biological processes. |
id |
RCAP_9f0d56479165f18b245a8d1999172e4f |
---|---|
oai_identifier_str |
oai:repositorium.sdum.uminho.pt:1822/16695 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Identification of minimal metabolic pathway models consistent with phenotypic dataElementary modesGenerating vectorsControlled random searchModel reductionMetabolismEscherichia coliScience & TechnologyThe cellular network of metabolic reactions, together with constraints of (ir)reversibility of enzymes, determines the space of all possible steady-state phenotypes. Analysis of large metabolic models, however, is not feasible in real-time and identification of a smaller model without loss of accuracy is desirable for model-based bioprocess optimization and control. To this end, we propose two search algorithms for systematic identification of a subset of pathways that match the observed cellular phenotype relevant for a particular process condition. Central carbon metabolism of Escherichia coli was used as a case-study together with three phenotypic datasets obtained from the literature. The first search method is based on ranking pathways and the second is a controlled random search (CRS) algorithm. Since we wish to obtain a biologically realistic subset of pathways, the objective function to be minimized is a trade-off between the error and investment costs. We found that the CRS outperforms the ranking algorithm, as it is less likely to fall into local minima. In addition, we compared two pathway analysis methods (elementary modes versus generating vectors) in terms of modelling accuracy and computational intensity. We conclude that generating vectors have preference over elementary modes to describe a particular phenotype. Overall, the original model containing 433 generating vectors or 2706 elementary modes could be reduced to a system of one to three pathways giving a good correlation with the measured datasets. We consider this work as a first step towards the use of detailed metabolic models to improve real-time optimization, monitoring, and control of biological processes.ElsevierUniversidade do MinhoSoons, ZitaFerreira, Eugénio C.Rocha, I.20112011-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttps://hdl.handle.net/1822/16695eng0959-152410.1016/j.jprocont.2011.05.012info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-07-21T12:47:04Zoai:repositorium.sdum.uminho.pt:1822/16695Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T19:45:08.673782Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Identification of minimal metabolic pathway models consistent with phenotypic data |
title |
Identification of minimal metabolic pathway models consistent with phenotypic data |
spellingShingle |
Identification of minimal metabolic pathway models consistent with phenotypic data Soons, Zita Elementary modes Generating vectors Controlled random search Model reduction Metabolism Escherichia coli Science & Technology |
title_short |
Identification of minimal metabolic pathway models consistent with phenotypic data |
title_full |
Identification of minimal metabolic pathway models consistent with phenotypic data |
title_fullStr |
Identification of minimal metabolic pathway models consistent with phenotypic data |
title_full_unstemmed |
Identification of minimal metabolic pathway models consistent with phenotypic data |
title_sort |
Identification of minimal metabolic pathway models consistent with phenotypic data |
author |
Soons, Zita |
author_facet |
Soons, Zita Ferreira, Eugénio C. Rocha, I. |
author_role |
author |
author2 |
Ferreira, Eugénio C. Rocha, I. |
author2_role |
author author |
dc.contributor.none.fl_str_mv |
Universidade do Minho |
dc.contributor.author.fl_str_mv |
Soons, Zita Ferreira, Eugénio C. Rocha, I. |
dc.subject.por.fl_str_mv |
Elementary modes Generating vectors Controlled random search Model reduction Metabolism Escherichia coli Science & Technology |
topic |
Elementary modes Generating vectors Controlled random search Model reduction Metabolism Escherichia coli Science & Technology |
description |
The cellular network of metabolic reactions, together with constraints of (ir)reversibility of enzymes, determines the space of all possible steady-state phenotypes. Analysis of large metabolic models, however, is not feasible in real-time and identification of a smaller model without loss of accuracy is desirable for model-based bioprocess optimization and control. To this end, we propose two search algorithms for systematic identification of a subset of pathways that match the observed cellular phenotype relevant for a particular process condition. Central carbon metabolism of Escherichia coli was used as a case-study together with three phenotypic datasets obtained from the literature. The first search method is based on ranking pathways and the second is a controlled random search (CRS) algorithm. Since we wish to obtain a biologically realistic subset of pathways, the objective function to be minimized is a trade-off between the error and investment costs. We found that the CRS outperforms the ranking algorithm, as it is less likely to fall into local minima. In addition, we compared two pathway analysis methods (elementary modes versus generating vectors) in terms of modelling accuracy and computational intensity. We conclude that generating vectors have preference over elementary modes to describe a particular phenotype. Overall, the original model containing 433 generating vectors or 2706 elementary modes could be reduced to a system of one to three pathways giving a good correlation with the measured datasets. We consider this work as a first step towards the use of detailed metabolic models to improve real-time optimization, monitoring, and control of biological processes. |
publishDate |
2011 |
dc.date.none.fl_str_mv |
2011 2011-01-01T00:00:00Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://hdl.handle.net/1822/16695 |
url |
https://hdl.handle.net/1822/16695 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
0959-1524 10.1016/j.jprocont.2011.05.012 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier |
publisher.none.fl_str_mv |
Elsevier |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799133015217012736 |