Forecasting demand in the clothing industry
Autor(a) principal: | |
---|---|
Data de Publicação: | 2013 |
Outros Autores: | |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/1822/26784 |
Resumo: | For many clothing companies the range of goods sold is renewed twice a year. Each new collection includes a large number of new items which have a short and well defined selling period corresponding to one selling season (20-30 weeks). The absence of past sales data, changes in fashion and product design causes difficulties in forecasting demand accurately. Thus, the predominant factors in this environment are the difficulty in obtaining accurate demand forecasts and the short selling season for goods. An inventory management system designed to operate in this context is therefore constrained by the fact that demand for many goods will not generally continue into the future. Using data for one particular company, the accuracy of demand forecasts obtained by traditional profile methods is analysed and a new approach to demand forecasting using artificial neural networks is presented. Some of the main questions concerning the implementation of neural network models are discussed. |
id |
RCAP_9f9bf621915aece9c19ba650897f70d6 |
---|---|
oai_identifier_str |
oai:repositorium.sdum.uminho.pt:1822/26784 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Forecasting demand in the clothing industryForecasting demandClothing industryArtificial neural networksFor many clothing companies the range of goods sold is renewed twice a year. Each new collection includes a large number of new items which have a short and well defined selling period corresponding to one selling season (20-30 weeks). The absence of past sales data, changes in fashion and product design causes difficulties in forecasting demand accurately. Thus, the predominant factors in this environment are the difficulty in obtaining accurate demand forecasts and the short selling season for goods. An inventory management system designed to operate in this context is therefore constrained by the fact that demand for many goods will not generally continue into the future. Using data for one particular company, the accuracy of demand forecasts obtained by traditional profile methods is analysed and a new approach to demand forecasting using artificial neural networks is presented. Some of the main questions concerning the implementation of neural network models are discussed.Fundos FEDER através do Programa Operacional Fatores de Competitividade – COMPETE e por Fundos Nacionais através da FCT – Fundação para a Ciência e Tecnologia, no âmbito do Projecto: FCOMP-01-0124-FEDER-022674.Sociedade Galega para a promoción da Estatística e da Investigación de Operacións (SGAPEIO)Universidade do MinhoRodrigues, Eduardo J.Figueiredo, Manuel2013-10-242013-10-24T00:00:00Zconference paperinfo:eu-repo/semantics/publishedVersionapplication/pdfhttp://hdl.handle.net/1822/26784eng84-695-8723-4info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-05-11T04:29:07Zoai:repositorium.sdum.uminho.pt:1822/26784Portal AgregadorONGhttps://www.rcaap.pt/oai/openairemluisa.alvim@gmail.comopendoar:71602024-05-11T04:29:07Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Forecasting demand in the clothing industry |
title |
Forecasting demand in the clothing industry |
spellingShingle |
Forecasting demand in the clothing industry Rodrigues, Eduardo J. Forecasting demand Clothing industry Artificial neural networks |
title_short |
Forecasting demand in the clothing industry |
title_full |
Forecasting demand in the clothing industry |
title_fullStr |
Forecasting demand in the clothing industry |
title_full_unstemmed |
Forecasting demand in the clothing industry |
title_sort |
Forecasting demand in the clothing industry |
author |
Rodrigues, Eduardo J. |
author_facet |
Rodrigues, Eduardo J. Figueiredo, Manuel |
author_role |
author |
author2 |
Figueiredo, Manuel |
author2_role |
author |
dc.contributor.none.fl_str_mv |
Universidade do Minho |
dc.contributor.author.fl_str_mv |
Rodrigues, Eduardo J. Figueiredo, Manuel |
dc.subject.por.fl_str_mv |
Forecasting demand Clothing industry Artificial neural networks |
topic |
Forecasting demand Clothing industry Artificial neural networks |
description |
For many clothing companies the range of goods sold is renewed twice a year. Each new collection includes a large number of new items which have a short and well defined selling period corresponding to one selling season (20-30 weeks). The absence of past sales data, changes in fashion and product design causes difficulties in forecasting demand accurately. Thus, the predominant factors in this environment are the difficulty in obtaining accurate demand forecasts and the short selling season for goods. An inventory management system designed to operate in this context is therefore constrained by the fact that demand for many goods will not generally continue into the future. Using data for one particular company, the accuracy of demand forecasts obtained by traditional profile methods is analysed and a new approach to demand forecasting using artificial neural networks is presented. Some of the main questions concerning the implementation of neural network models are discussed. |
publishDate |
2013 |
dc.date.none.fl_str_mv |
2013-10-24 2013-10-24T00:00:00Z |
dc.type.driver.fl_str_mv |
conference paper |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/1822/26784 |
url |
http://hdl.handle.net/1822/26784 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
84-695-8723-4 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Sociedade Galega para a promoción da Estatística e da Investigación de Operacións (SGAPEIO) |
publisher.none.fl_str_mv |
Sociedade Galega para a promoción da Estatística e da Investigación de Operacións (SGAPEIO) |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
mluisa.alvim@gmail.com |
_version_ |
1817544326157172736 |