Forecasting demand in the clothing industry

Detalhes bibliográficos
Autor(a) principal: Rodrigues, Eduardo J.
Data de Publicação: 2013
Outros Autores: Figueiredo, Manuel
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/1822/26784
Resumo: For many clothing companies the range of goods sold is renewed twice a year. Each new collection includes a large number of new items which have a short and well defined selling period corresponding to one selling season (20-30 weeks). The absence of past sales data, changes in fashion and product design causes difficulties in forecasting demand accurately. Thus, the predominant factors in this environment are the difficulty in obtaining accurate demand forecasts and the short selling season for goods. An inventory management system designed to operate in this context is therefore constrained by the fact that demand for many goods will not generally continue into the future. Using data for one particular company, the accuracy of demand forecasts obtained by traditional profile methods is analysed and a new approach to demand forecasting using artificial neural networks is presented. Some of the main questions concerning the implementation of neural network models are discussed.
id RCAP_9f9bf621915aece9c19ba650897f70d6
oai_identifier_str oai:repositorium.sdum.uminho.pt:1822/26784
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Forecasting demand in the clothing industryForecasting demandClothing industryArtificial neural networksFor many clothing companies the range of goods sold is renewed twice a year. Each new collection includes a large number of new items which have a short and well defined selling period corresponding to one selling season (20-30 weeks). The absence of past sales data, changes in fashion and product design causes difficulties in forecasting demand accurately. Thus, the predominant factors in this environment are the difficulty in obtaining accurate demand forecasts and the short selling season for goods. An inventory management system designed to operate in this context is therefore constrained by the fact that demand for many goods will not generally continue into the future. Using data for one particular company, the accuracy of demand forecasts obtained by traditional profile methods is analysed and a new approach to demand forecasting using artificial neural networks is presented. Some of the main questions concerning the implementation of neural network models are discussed.Fundos FEDER através do Programa Operacional Fatores de Competitividade – COMPETE e por Fundos Nacionais através da FCT – Fundação para a Ciência e Tecnologia, no âmbito do Projecto: FCOMP-01-0124-FEDER-022674.Sociedade Galega para a promoción da Estatística e da Investigación de Operacións (SGAPEIO)Universidade do MinhoRodrigues, Eduardo J.Figueiredo, Manuel2013-10-242013-10-24T00:00:00Zconference paperinfo:eu-repo/semantics/publishedVersionapplication/pdfhttp://hdl.handle.net/1822/26784eng84-695-8723-4info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-05-11T04:29:07Zoai:repositorium.sdum.uminho.pt:1822/26784Portal AgregadorONGhttps://www.rcaap.pt/oai/openairemluisa.alvim@gmail.comopendoar:71602024-05-11T04:29:07Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Forecasting demand in the clothing industry
title Forecasting demand in the clothing industry
spellingShingle Forecasting demand in the clothing industry
Rodrigues, Eduardo J.
Forecasting demand
Clothing industry
Artificial neural networks
title_short Forecasting demand in the clothing industry
title_full Forecasting demand in the clothing industry
title_fullStr Forecasting demand in the clothing industry
title_full_unstemmed Forecasting demand in the clothing industry
title_sort Forecasting demand in the clothing industry
author Rodrigues, Eduardo J.
author_facet Rodrigues, Eduardo J.
Figueiredo, Manuel
author_role author
author2 Figueiredo, Manuel
author2_role author
dc.contributor.none.fl_str_mv Universidade do Minho
dc.contributor.author.fl_str_mv Rodrigues, Eduardo J.
Figueiredo, Manuel
dc.subject.por.fl_str_mv Forecasting demand
Clothing industry
Artificial neural networks
topic Forecasting demand
Clothing industry
Artificial neural networks
description For many clothing companies the range of goods sold is renewed twice a year. Each new collection includes a large number of new items which have a short and well defined selling period corresponding to one selling season (20-30 weeks). The absence of past sales data, changes in fashion and product design causes difficulties in forecasting demand accurately. Thus, the predominant factors in this environment are the difficulty in obtaining accurate demand forecasts and the short selling season for goods. An inventory management system designed to operate in this context is therefore constrained by the fact that demand for many goods will not generally continue into the future. Using data for one particular company, the accuracy of demand forecasts obtained by traditional profile methods is analysed and a new approach to demand forecasting using artificial neural networks is presented. Some of the main questions concerning the implementation of neural network models are discussed.
publishDate 2013
dc.date.none.fl_str_mv 2013-10-24
2013-10-24T00:00:00Z
dc.type.driver.fl_str_mv conference paper
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/1822/26784
url http://hdl.handle.net/1822/26784
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 84-695-8723-4
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Sociedade Galega para a promoción da Estatística e da Investigación de Operacións (SGAPEIO)
publisher.none.fl_str_mv Sociedade Galega para a promoción da Estatística e da Investigación de Operacións (SGAPEIO)
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv mluisa.alvim@gmail.com
_version_ 1817544326157172736