Uplift modeling: telemarketing campaigns cost optimisation for Vodafone
Autor(a) principal: | |
---|---|
Data de Publicação: | 2020 |
Tipo de documento: | Dissertação |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10362/102628 |
Resumo: | To decrease churn Telcos have been using machine learning techniques to target the most propense customers to churn. Propensity to churn (predictive model) should not be the focus of marketeers. It is with prescriptive models that marketing campaigns can be optimized, as the focus is in finding the clients that will benefit the most from the campaigns and not the most propense to accept. The application of uplift modelling, by targeting the right customers, is shown in this thesis to increase profit by 15% and to halve the churn rate in the mobile post-paid Vodafone customers. |
id |
RCAP_9f9f5387753e607f890c0d88c28d41d0 |
---|---|
oai_identifier_str |
oai:run.unl.pt:10362/102628 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Uplift modeling: telemarketing campaigns cost optimisation for VodafoneUplift modellingMarketing optimisationDomínio/Área Científica::Ciências Sociais::Economia e GestãoTo decrease churn Telcos have been using machine learning techniques to target the most propense customers to churn. Propensity to churn (predictive model) should not be the focus of marketeers. It is with prescriptive models that marketing campaigns can be optimized, as the focus is in finding the clients that will benefit the most from the campaigns and not the most propense to accept. The application of uplift modelling, by targeting the right customers, is shown in this thesis to increase profit by 15% and to halve the churn rate in the mobile post-paid Vodafone customers.Qiwei HanRUNAlves, Ângelo Daniel Teixeira de Sousa2023-08-20T00:30:58Z2020-01-142020-08-202020-01-14T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10362/102628TID:202495426enginfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-03-11T04:48:22Zoai:run.unl.pt:10362/102628Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T03:39:45.157480Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Uplift modeling: telemarketing campaigns cost optimisation for Vodafone |
title |
Uplift modeling: telemarketing campaigns cost optimisation for Vodafone |
spellingShingle |
Uplift modeling: telemarketing campaigns cost optimisation for Vodafone Alves, Ângelo Daniel Teixeira de Sousa Uplift modelling Marketing optimisation Domínio/Área Científica::Ciências Sociais::Economia e Gestão |
title_short |
Uplift modeling: telemarketing campaigns cost optimisation for Vodafone |
title_full |
Uplift modeling: telemarketing campaigns cost optimisation for Vodafone |
title_fullStr |
Uplift modeling: telemarketing campaigns cost optimisation for Vodafone |
title_full_unstemmed |
Uplift modeling: telemarketing campaigns cost optimisation for Vodafone |
title_sort |
Uplift modeling: telemarketing campaigns cost optimisation for Vodafone |
author |
Alves, Ângelo Daniel Teixeira de Sousa |
author_facet |
Alves, Ângelo Daniel Teixeira de Sousa |
author_role |
author |
dc.contributor.none.fl_str_mv |
Qiwei Han RUN |
dc.contributor.author.fl_str_mv |
Alves, Ângelo Daniel Teixeira de Sousa |
dc.subject.por.fl_str_mv |
Uplift modelling Marketing optimisation Domínio/Área Científica::Ciências Sociais::Economia e Gestão |
topic |
Uplift modelling Marketing optimisation Domínio/Área Científica::Ciências Sociais::Economia e Gestão |
description |
To decrease churn Telcos have been using machine learning techniques to target the most propense customers to churn. Propensity to churn (predictive model) should not be the focus of marketeers. It is with prescriptive models that marketing campaigns can be optimized, as the focus is in finding the clients that will benefit the most from the campaigns and not the most propense to accept. The application of uplift modelling, by targeting the right customers, is shown in this thesis to increase profit by 15% and to halve the churn rate in the mobile post-paid Vodafone customers. |
publishDate |
2020 |
dc.date.none.fl_str_mv |
2020-01-14 2020-08-20 2020-01-14T00:00:00Z 2023-08-20T00:30:58Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10362/102628 TID:202495426 |
url |
http://hdl.handle.net/10362/102628 |
identifier_str_mv |
TID:202495426 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799138014352375808 |