Microbiology for chemical engineers - from macro to micro scale
Autor(a) principal: | |
---|---|
Data de Publicação: | 2007 |
Outros Autores: | , , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10400.14/5437 |
Resumo: | Recent developments in microbial techniques (such as PCR, GE, FISH) have allowed researchers to detect, identify and quantify microorganisms without the limitation of culture-dependent methods. This has given both engineers and scientists a more fundamental understanding about systems containing microorganisms. These techniques can be used to monitor bacteria in wastewater treatment systems, soil and sea, industrial fermentation, food technology, and improve floccability, etc. However, despite these techniques being readily available and relatively cheap, they are not widely used by engineers. Hence, the aim of this paper is to introduce these techniques, and their applications, to chemical engineers. Two different studies related to industrial wastewater treatment, but applicable to general microorganism systems, will be presented: (1) microbial stability of pure cultures, and (2) bioreactor population shifts during alternating operational conditions. In (1), two bioreactors, inoculated with two different pure cultures, (A) Xanthobacter aut GJ10 and (B) Bulkholderia sp JS150, degrading 1,2-dichloroethane (DCE) and monochlorobenzene (MCB), respectively, were followed over time (Emanuelsson et al ., 2005). Specific and universal 16S rRNA oligonucleotide probes were used to identify the bacteria. It was found that bioreactor (A) remained pure for 290 days, whereas bioreactor (B) became contaminated within one week. The difference in behaviour is attributed to the pathway required to degrade DCE. In (2), the stability of a bacterial strain, which was isolated on the basis of its capability to degrade 2-fluorobenzoate from contaminated soil, in three different, up-flow fixed bed reactors operated under shock loads and starvation periods, was followed by denaturing gradient gel electrophoresis (DGGE) (Emanuelsson et al ., 2006). All bioreactors were rapidly colonised by different bacteria; however, the communities remained fairly stable over time, and shifts in bacterial populations were mainly found during the starvation periods. |
id |
RCAP_9fb38ca151966b996240d5d6da55a7b3 |
---|---|
oai_identifier_str |
oai:repositorio.ucp.pt:10400.14/5437 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Microbiology for chemical engineers - from macro to micro scaleBacteriaStabilityNon-sterileLong-termBioreactorRecent developments in microbial techniques (such as PCR, GE, FISH) have allowed researchers to detect, identify and quantify microorganisms without the limitation of culture-dependent methods. This has given both engineers and scientists a more fundamental understanding about systems containing microorganisms. These techniques can be used to monitor bacteria in wastewater treatment systems, soil and sea, industrial fermentation, food technology, and improve floccability, etc. However, despite these techniques being readily available and relatively cheap, they are not widely used by engineers. Hence, the aim of this paper is to introduce these techniques, and their applications, to chemical engineers. Two different studies related to industrial wastewater treatment, but applicable to general microorganism systems, will be presented: (1) microbial stability of pure cultures, and (2) bioreactor population shifts during alternating operational conditions. In (1), two bioreactors, inoculated with two different pure cultures, (A) Xanthobacter aut GJ10 and (B) Bulkholderia sp JS150, degrading 1,2-dichloroethane (DCE) and monochlorobenzene (MCB), respectively, were followed over time (Emanuelsson et al ., 2005). Specific and universal 16S rRNA oligonucleotide probes were used to identify the bacteria. It was found that bioreactor (A) remained pure for 290 days, whereas bioreactor (B) became contaminated within one week. The difference in behaviour is attributed to the pathway required to degrade DCE. In (2), the stability of a bacterial strain, which was isolated on the basis of its capability to degrade 2-fluorobenzoate from contaminated soil, in three different, up-flow fixed bed reactors operated under shock loads and starvation periods, was followed by denaturing gradient gel electrophoresis (DGGE) (Emanuelsson et al ., 2006). All bioreactors were rapidly colonised by different bacteria; however, the communities remained fairly stable over time, and shifts in bacterial populations were mainly found during the starvation periods.Wiley-BlackwellVeritati - Repositório Institucional da Universidade Católica PortuguesaEmanuelsson, E. A. C.Emanuelsson, M. A. E.Patterson, D. A.Castro, P. M. L.Livingston, A. G.2011-09-13T11:09:03Z2007-022007-02-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10400.14/5437eng"Asia-Pacific journal of chemical engineering". ISSN 1932-2143: 2: 5 (2007) 448-45410.1002/apj.80info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-09-06T11:59:04Zoai:repositorio.ucp.pt:10400.14/5437Portal AgregadorONGhttps://www.rcaap.pt/oai/openairemluisa.alvim@gmail.comopendoar:71602024-09-06T11:59:04Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Microbiology for chemical engineers - from macro to micro scale |
title |
Microbiology for chemical engineers - from macro to micro scale |
spellingShingle |
Microbiology for chemical engineers - from macro to micro scale Emanuelsson, E. A. C. Bacteria Stability Non-sterile Long-term Bioreactor |
title_short |
Microbiology for chemical engineers - from macro to micro scale |
title_full |
Microbiology for chemical engineers - from macro to micro scale |
title_fullStr |
Microbiology for chemical engineers - from macro to micro scale |
title_full_unstemmed |
Microbiology for chemical engineers - from macro to micro scale |
title_sort |
Microbiology for chemical engineers - from macro to micro scale |
author |
Emanuelsson, E. A. C. |
author_facet |
Emanuelsson, E. A. C. Emanuelsson, M. A. E. Patterson, D. A. Castro, P. M. L. Livingston, A. G. |
author_role |
author |
author2 |
Emanuelsson, M. A. E. Patterson, D. A. Castro, P. M. L. Livingston, A. G. |
author2_role |
author author author author |
dc.contributor.none.fl_str_mv |
Veritati - Repositório Institucional da Universidade Católica Portuguesa |
dc.contributor.author.fl_str_mv |
Emanuelsson, E. A. C. Emanuelsson, M. A. E. Patterson, D. A. Castro, P. M. L. Livingston, A. G. |
dc.subject.por.fl_str_mv |
Bacteria Stability Non-sterile Long-term Bioreactor |
topic |
Bacteria Stability Non-sterile Long-term Bioreactor |
description |
Recent developments in microbial techniques (such as PCR, GE, FISH) have allowed researchers to detect, identify and quantify microorganisms without the limitation of culture-dependent methods. This has given both engineers and scientists a more fundamental understanding about systems containing microorganisms. These techniques can be used to monitor bacteria in wastewater treatment systems, soil and sea, industrial fermentation, food technology, and improve floccability, etc. However, despite these techniques being readily available and relatively cheap, they are not widely used by engineers. Hence, the aim of this paper is to introduce these techniques, and their applications, to chemical engineers. Two different studies related to industrial wastewater treatment, but applicable to general microorganism systems, will be presented: (1) microbial stability of pure cultures, and (2) bioreactor population shifts during alternating operational conditions. In (1), two bioreactors, inoculated with two different pure cultures, (A) Xanthobacter aut GJ10 and (B) Bulkholderia sp JS150, degrading 1,2-dichloroethane (DCE) and monochlorobenzene (MCB), respectively, were followed over time (Emanuelsson et al ., 2005). Specific and universal 16S rRNA oligonucleotide probes were used to identify the bacteria. It was found that bioreactor (A) remained pure for 290 days, whereas bioreactor (B) became contaminated within one week. The difference in behaviour is attributed to the pathway required to degrade DCE. In (2), the stability of a bacterial strain, which was isolated on the basis of its capability to degrade 2-fluorobenzoate from contaminated soil, in three different, up-flow fixed bed reactors operated under shock loads and starvation periods, was followed by denaturing gradient gel electrophoresis (DGGE) (Emanuelsson et al ., 2006). All bioreactors were rapidly colonised by different bacteria; however, the communities remained fairly stable over time, and shifts in bacterial populations were mainly found during the starvation periods. |
publishDate |
2007 |
dc.date.none.fl_str_mv |
2007-02 2007-02-01T00:00:00Z 2011-09-13T11:09:03Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10400.14/5437 |
url |
http://hdl.handle.net/10400.14/5437 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
"Asia-Pacific journal of chemical engineering". ISSN 1932-2143: 2: 5 (2007) 448-454 10.1002/apj.80 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Wiley-Blackwell |
publisher.none.fl_str_mv |
Wiley-Blackwell |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
mluisa.alvim@gmail.com |
_version_ |
1817546697487679488 |