Automatic Classification and Segmentation of Low-Grade Gliomas in Magnetic Resonance Imaging
Autor(a) principal: | |
---|---|
Data de Publicação: | 2020 |
Outros Autores: | , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10400.22/17880 |
Resumo: | Proceedings of the Tenth International Conference on Soft Computing and Pattern Recognition (SoCPaR 2018) |
id |
RCAP_9fb7cf850863f54f6ece9ead7671646d |
---|---|
oai_identifier_str |
oai:recipp.ipp.pt:10400.22/17880 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Automatic Classification and Segmentation of Low-Grade Gliomas in Magnetic Resonance ImagingLow-grade gliomaImage segmentationMRIProceedings of the Tenth International Conference on Soft Computing and Pattern Recognition (SoCPaR 2018)In this article a new methodology is proposed to tackle the problem of automatic segmentation of low-grade gliomas. The possibility of knowing the limits of this type of tumor is crucial for effectively characterizing the neoplasm, enabling, in certain cases, to obtain useful information about how to treat the patient in a more effective way. Using a database of magnetic resonance images, containing several occurrences of this type of tumors, and through a carefully designed image processing pipeline, the purpose of this work is to accurately locate, isolate and thus facilitate the classification of the pathology. The proposed methodology, described in detail, was able to achieve an accuracy of 87.5% for a binary classification task. The quality of the identified regions had an accuracy of 81.6%. These are promising results that may point the effectiveness of the approach. The low contrast of the images, as a result of the acquisition process, and the detection of very small tumors are still challenges that bring motivation to further pursue additional results.SpringerRepositório Científico do Instituto Politécnico do PortoBarbosa, MartaMoreira, PedroRibeiro, RogérioCoelho, Luis20202100-01-01T00:00:00Z2020-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10400.22/17880engBarbosa, M., Moreira, P., Ribeiro, R., Coelho, L., “Automatic Classification and Segmentation of Low-Grade Gliomas in Magnetic Resonance Imaging”. (2020) Advances in Intelligent Systems and Computing, 942, pp. 43-50. DOI: https://doi.org/10.1007/978-3-030-17065-3_510.1007/978-3-030-17065-3_5metadata only accessinfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-03-13T13:09:03Zoai:recipp.ipp.pt:10400.22/17880Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T17:37:28.749348Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Automatic Classification and Segmentation of Low-Grade Gliomas in Magnetic Resonance Imaging |
title |
Automatic Classification and Segmentation of Low-Grade Gliomas in Magnetic Resonance Imaging |
spellingShingle |
Automatic Classification and Segmentation of Low-Grade Gliomas in Magnetic Resonance Imaging Barbosa, Marta Low-grade glioma Image segmentation MRI |
title_short |
Automatic Classification and Segmentation of Low-Grade Gliomas in Magnetic Resonance Imaging |
title_full |
Automatic Classification and Segmentation of Low-Grade Gliomas in Magnetic Resonance Imaging |
title_fullStr |
Automatic Classification and Segmentation of Low-Grade Gliomas in Magnetic Resonance Imaging |
title_full_unstemmed |
Automatic Classification and Segmentation of Low-Grade Gliomas in Magnetic Resonance Imaging |
title_sort |
Automatic Classification and Segmentation of Low-Grade Gliomas in Magnetic Resonance Imaging |
author |
Barbosa, Marta |
author_facet |
Barbosa, Marta Moreira, Pedro Ribeiro, Rogério Coelho, Luis |
author_role |
author |
author2 |
Moreira, Pedro Ribeiro, Rogério Coelho, Luis |
author2_role |
author author author |
dc.contributor.none.fl_str_mv |
Repositório Científico do Instituto Politécnico do Porto |
dc.contributor.author.fl_str_mv |
Barbosa, Marta Moreira, Pedro Ribeiro, Rogério Coelho, Luis |
dc.subject.por.fl_str_mv |
Low-grade glioma Image segmentation MRI |
topic |
Low-grade glioma Image segmentation MRI |
description |
Proceedings of the Tenth International Conference on Soft Computing and Pattern Recognition (SoCPaR 2018) |
publishDate |
2020 |
dc.date.none.fl_str_mv |
2020 2020-01-01T00:00:00Z 2100-01-01T00:00:00Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10400.22/17880 |
url |
http://hdl.handle.net/10400.22/17880 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
Barbosa, M., Moreira, P., Ribeiro, R., Coelho, L., “Automatic Classification and Segmentation of Low-Grade Gliomas in Magnetic Resonance Imaging”. (2020) Advances in Intelligent Systems and Computing, 942, pp. 43-50. DOI: https://doi.org/10.1007/978-3-030-17065-3_5 10.1007/978-3-030-17065-3_5 |
dc.rights.driver.fl_str_mv |
metadata only access info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
metadata only access |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Springer |
publisher.none.fl_str_mv |
Springer |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799131465457336320 |