Fast solvers for tridiagonal Toeplitz linear systems
Autor(a) principal: | |
---|---|
Data de Publicação: | 2020 |
Outros Autores: | , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/1822/68832 |
Resumo: | Let A be a tridiagonal Toeplitz matrix denoted by A=Tritoep(β,α,γ). The matrix A is said to be: strictly diagonally dominant if |α|>|β|+|γ|, weakly diagonally dominant if |α|≥|β|+|γ|, subdiagonally dominant if |β|≥|α|+|γ|, and superdiagonally dominant if |γ|≥|α|+|β|. In this paper, we consider the solution of a tridiagonal Toeplitz system Ax=b, where A is subdiagonally dominant, superdiagonally dominant, or weakly diagonally dominant, respectively. We first consider the case of A being subdiagonally dominant. We transform A into a block 2×2 matrix by an elementary transformation and then solve such a linear system using the block LU factorization. Compared with the LU factorization method with pivoting, our algorithm takes less flops, and needs less memory storage and data transmission. In particular, our algorithm outperforms the LU factorization method with pivoting in terms of computing efficiency. Then, we deal with superdiagonally dominant and weakly diagonally dominant cases, respectively. Numerical experiments are finally given to illustrate the effectiveness of our algorithms |
id |
RCAP_a069668d77a104d60a0df85053ecafda |
---|---|
oai_identifier_str |
oai:repositorium.sdum.uminho.pt:1822/68832 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Fast solvers for tridiagonal Toeplitz linear systemsTridiagonal Toeplitz matricesDiagonally dominantSchur complementBlock LU factorizationPivoting15A2315B0565F0565F10Ciências Naturais::MatemáticasScience & TechnologyLet A be a tridiagonal Toeplitz matrix denoted by A=Tritoep(β,α,γ). The matrix A is said to be: strictly diagonally dominant if |α|>|β|+|γ|, weakly diagonally dominant if |α|≥|β|+|γ|, subdiagonally dominant if |β|≥|α|+|γ|, and superdiagonally dominant if |γ|≥|α|+|β|. In this paper, we consider the solution of a tridiagonal Toeplitz system Ax=b, where A is subdiagonally dominant, superdiagonally dominant, or weakly diagonally dominant, respectively. We first consider the case of A being subdiagonally dominant. We transform A into a block 2×2 matrix by an elementary transformation and then solve such a linear system using the block LU factorization. Compared with the LU factorization method with pivoting, our algorithm takes less flops, and needs less memory storage and data transmission. In particular, our algorithm outperforms the LU factorization method with pivoting in terms of computing efficiency. Then, we deal with superdiagonally dominant and weakly diagonally dominant cases, respectively. Numerical experiments are finally given to illustrate the effectiveness of our algorithmsNational Natural Science Foundation of China under Grant no. 11371075, the Hunan Key Laboratory of mathematical modeling and analysis in engineering, the research innovation program of Changsha University of Science and Technology for postgraduate students under Grant (CX2019SS34), and the Portuguese Funds through FCT-Fundação para a Ciência, within the Project UIDB/00013/2020 and UIDP/00013/2020SpringerUniversidade do MinhoLiu, ZhongyunLi, ShanYin, YiZhang, Yulin2020-112020-11-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/1822/68832eng0101-82051807-030210.1007/s40314-020-01369-3https://link.springer.com/article/10.1007/s40314-020-01369-3info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-05-11T05:43:04Zoai:repositorium.sdum.uminho.pt:1822/68832Portal AgregadorONGhttps://www.rcaap.pt/oai/openairemluisa.alvim@gmail.comopendoar:71602024-05-11T05:43:04Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Fast solvers for tridiagonal Toeplitz linear systems |
title |
Fast solvers for tridiagonal Toeplitz linear systems |
spellingShingle |
Fast solvers for tridiagonal Toeplitz linear systems Liu, Zhongyun Tridiagonal Toeplitz matrices Diagonally dominant Schur complement Block LU factorization Pivoting 15A23 15B05 65F05 65F10 Ciências Naturais::Matemáticas Science & Technology |
title_short |
Fast solvers for tridiagonal Toeplitz linear systems |
title_full |
Fast solvers for tridiagonal Toeplitz linear systems |
title_fullStr |
Fast solvers for tridiagonal Toeplitz linear systems |
title_full_unstemmed |
Fast solvers for tridiagonal Toeplitz linear systems |
title_sort |
Fast solvers for tridiagonal Toeplitz linear systems |
author |
Liu, Zhongyun |
author_facet |
Liu, Zhongyun Li, Shan Yin, Yi Zhang, Yulin |
author_role |
author |
author2 |
Li, Shan Yin, Yi Zhang, Yulin |
author2_role |
author author author |
dc.contributor.none.fl_str_mv |
Universidade do Minho |
dc.contributor.author.fl_str_mv |
Liu, Zhongyun Li, Shan Yin, Yi Zhang, Yulin |
dc.subject.por.fl_str_mv |
Tridiagonal Toeplitz matrices Diagonally dominant Schur complement Block LU factorization Pivoting 15A23 15B05 65F05 65F10 Ciências Naturais::Matemáticas Science & Technology |
topic |
Tridiagonal Toeplitz matrices Diagonally dominant Schur complement Block LU factorization Pivoting 15A23 15B05 65F05 65F10 Ciências Naturais::Matemáticas Science & Technology |
description |
Let A be a tridiagonal Toeplitz matrix denoted by A=Tritoep(β,α,γ). The matrix A is said to be: strictly diagonally dominant if |α|>|β|+|γ|, weakly diagonally dominant if |α|≥|β|+|γ|, subdiagonally dominant if |β|≥|α|+|γ|, and superdiagonally dominant if |γ|≥|α|+|β|. In this paper, we consider the solution of a tridiagonal Toeplitz system Ax=b, where A is subdiagonally dominant, superdiagonally dominant, or weakly diagonally dominant, respectively. We first consider the case of A being subdiagonally dominant. We transform A into a block 2×2 matrix by an elementary transformation and then solve such a linear system using the block LU factorization. Compared with the LU factorization method with pivoting, our algorithm takes less flops, and needs less memory storage and data transmission. In particular, our algorithm outperforms the LU factorization method with pivoting in terms of computing efficiency. Then, we deal with superdiagonally dominant and weakly diagonally dominant cases, respectively. Numerical experiments are finally given to illustrate the effectiveness of our algorithms |
publishDate |
2020 |
dc.date.none.fl_str_mv |
2020-11 2020-11-01T00:00:00Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/1822/68832 |
url |
http://hdl.handle.net/1822/68832 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
0101-8205 1807-0302 10.1007/s40314-020-01369-3 https://link.springer.com/article/10.1007/s40314-020-01369-3 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Springer |
publisher.none.fl_str_mv |
Springer |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
mluisa.alvim@gmail.com |
_version_ |
1817544715085545472 |