Ensembles of Adaptive Model Rules from High-Speed Data Streams
Autor(a) principal: | |
---|---|
Data de Publicação: | 2014 |
Outros Autores: | |
Tipo de documento: | Livro |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | https://hdl.handle.net/10216/83025 |
Resumo: | The volume and velocity of data is increasing at astonishing rates. In order to extract knowledge from this huge amount of information there is a need for efficient on-line learning algorithms. Rule-based algorithms produce models that are easy to understand and can be used almost offhand. Ensemble methods combine several predicting models to improve the quality of prediction. In this paper, a new on-line ensemble method that combines a set of rule-based models is proposed to solve regression problems from data streams. Experimental results using synthetic and real time-evolving data streams show the proposed method significantly improves the performance of the single rule-based learner, and outperforms two state-of-the-art regression algorithms for data streams. |
id |
RCAP_a19c00f661f794c81574e58aa0c70f9c |
---|---|
oai_identifier_str |
oai:repositorio-aberto.up.pt:10216/83025 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Ensembles of Adaptive Model Rules from High-Speed Data StreamsThe volume and velocity of data is increasing at astonishing rates. In order to extract knowledge from this huge amount of information there is a need for efficient on-line learning algorithms. Rule-based algorithms produce models that are easy to understand and can be used almost offhand. Ensemble methods combine several predicting models to improve the quality of prediction. In this paper, a new on-line ensemble method that combines a set of rule-based models is proposed to solve regression problems from data streams. Experimental results using synthetic and real time-evolving data streams show the proposed method significantly improves the performance of the single rule-based learner, and outperforms two state-of-the-art regression algorithms for data streams.20142014-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/bookapplication/pdfhttps://hdl.handle.net/10216/83025engDuarte, JJoão Gamainfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-11-29T16:14:15Zoai:repositorio-aberto.up.pt:10216/83025Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T00:39:36.385389Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Ensembles of Adaptive Model Rules from High-Speed Data Streams |
title |
Ensembles of Adaptive Model Rules from High-Speed Data Streams |
spellingShingle |
Ensembles of Adaptive Model Rules from High-Speed Data Streams Duarte, J |
title_short |
Ensembles of Adaptive Model Rules from High-Speed Data Streams |
title_full |
Ensembles of Adaptive Model Rules from High-Speed Data Streams |
title_fullStr |
Ensembles of Adaptive Model Rules from High-Speed Data Streams |
title_full_unstemmed |
Ensembles of Adaptive Model Rules from High-Speed Data Streams |
title_sort |
Ensembles of Adaptive Model Rules from High-Speed Data Streams |
author |
Duarte, J |
author_facet |
Duarte, J João Gama |
author_role |
author |
author2 |
João Gama |
author2_role |
author |
dc.contributor.author.fl_str_mv |
Duarte, J João Gama |
description |
The volume and velocity of data is increasing at astonishing rates. In order to extract knowledge from this huge amount of information there is a need for efficient on-line learning algorithms. Rule-based algorithms produce models that are easy to understand and can be used almost offhand. Ensemble methods combine several predicting models to improve the quality of prediction. In this paper, a new on-line ensemble method that combines a set of rule-based models is proposed to solve regression problems from data streams. Experimental results using synthetic and real time-evolving data streams show the proposed method significantly improves the performance of the single rule-based learner, and outperforms two state-of-the-art regression algorithms for data streams. |
publishDate |
2014 |
dc.date.none.fl_str_mv |
2014 2014-01-01T00:00:00Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/book |
format |
book |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://hdl.handle.net/10216/83025 |
url |
https://hdl.handle.net/10216/83025 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799136302446149632 |