Silicon-incorporated diamond-like coatings for Si3N4 mechanical seals
Autor(a) principal: | |
---|---|
Data de Publicação: | 2005 |
Outros Autores: | , , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/1822/6132 |
Resumo: | Amorphous silicon carbide (a-SiC) and silicon-incorporated diamond-like carbon films (DLC-Si) were evaluated as protective and friction reduction coatings onto Si3N4 rings. Unlubricated tribological tests were performed with a pin-on-disk apparatus against stainless steel pins with loads ranging from 3 N to 55 N and sliding velocities from 0.2 m/s to 1.0 m/s under ambient air and 50-60% relative humidity. At the lowest loads, a-SiC coatings present a considerable improvement with respect to the behavior of uncoated disks since the friction coefficient is reduced to about 0.2 and the system is able to run stably for thousands of meters. At higher loads, however, a-SiC coatings fail. DLC-Si coated rings, on the other hand, presented for loads up to 10 N a steady state friction coefficient below 0.1 and very low wear rates. The lowest steady-state mean friction coefficient value of only 0.055 was obtained with a sliding velocity of 0.5 m/s. For higher loads in the range of 20 N the friction coefficient drops to values around 0.1 but no steady state is reached. For the highest loads of over 50 N a catastrophic behavior is observed. Typically, wear rates below 5 x 10-6 mm3/N.m and 2 x 10-7 mm3/N.m were obtained for the ceramic rings and pins, respectively, with a load of 10 N and a sliding velocity of 0.5 m/s. Analysis of the steel pin contact surface by SEM-EDS and Auger spectroscopy revealed the formation of an adherent tribo-layer mainly composed by Si, C and O. The unique structure of DLC-Si films is thought to be responsible for the formation of the tribo-layer. |
id |
RCAP_a23e3c8b6b9b6c838e51f201a4e50d19 |
---|---|
oai_identifier_str |
oai:repositorium.sdum.uminho.pt:1822/6132 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Silicon-incorporated diamond-like coatings for Si3N4 mechanical sealsAmorphous silicon carbideDiamond-like carbon filmsSi3N4 ringsSi N rings 3 4Science & TechnologyAmorphous silicon carbide (a-SiC) and silicon-incorporated diamond-like carbon films (DLC-Si) were evaluated as protective and friction reduction coatings onto Si3N4 rings. Unlubricated tribological tests were performed with a pin-on-disk apparatus against stainless steel pins with loads ranging from 3 N to 55 N and sliding velocities from 0.2 m/s to 1.0 m/s under ambient air and 50-60% relative humidity. At the lowest loads, a-SiC coatings present a considerable improvement with respect to the behavior of uncoated disks since the friction coefficient is reduced to about 0.2 and the system is able to run stably for thousands of meters. At higher loads, however, a-SiC coatings fail. DLC-Si coated rings, on the other hand, presented for loads up to 10 N a steady state friction coefficient below 0.1 and very low wear rates. The lowest steady-state mean friction coefficient value of only 0.055 was obtained with a sliding velocity of 0.5 m/s. For higher loads in the range of 20 N the friction coefficient drops to values around 0.1 but no steady state is reached. For the highest loads of over 50 N a catastrophic behavior is observed. Typically, wear rates below 5 x 10-6 mm3/N.m and 2 x 10-7 mm3/N.m were obtained for the ceramic rings and pins, respectively, with a load of 10 N and a sliding velocity of 0.5 m/s. Analysis of the steel pin contact surface by SEM-EDS and Auger spectroscopy revealed the formation of an adherent tribo-layer mainly composed by Si, C and O. The unique structure of DLC-Si films is thought to be responsible for the formation of the tribo-layer.ElsevierUniversidade do MinhoCamargo Junior, S. S.Gomes, J. R.Carrapichano, J. M.Silva, R. F.Achete, C. A.2005-112005-11-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/1822/6132eng"Thin solid films". ISSN 0040-6090. 482:2 (Nov. 2005) 221-225.0040-609010.1016/j.tsf.2004.11.149info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-07-21T12:11:49Zoai:repositorium.sdum.uminho.pt:1822/6132Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T19:03:38.745492Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Silicon-incorporated diamond-like coatings for Si3N4 mechanical seals |
title |
Silicon-incorporated diamond-like coatings for Si3N4 mechanical seals |
spellingShingle |
Silicon-incorporated diamond-like coatings for Si3N4 mechanical seals Camargo Junior, S. S. Amorphous silicon carbide Diamond-like carbon films Si3N4 rings Si N rings 3 4 Science & Technology |
title_short |
Silicon-incorporated diamond-like coatings for Si3N4 mechanical seals |
title_full |
Silicon-incorporated diamond-like coatings for Si3N4 mechanical seals |
title_fullStr |
Silicon-incorporated diamond-like coatings for Si3N4 mechanical seals |
title_full_unstemmed |
Silicon-incorporated diamond-like coatings for Si3N4 mechanical seals |
title_sort |
Silicon-incorporated diamond-like coatings for Si3N4 mechanical seals |
author |
Camargo Junior, S. S. |
author_facet |
Camargo Junior, S. S. Gomes, J. R. Carrapichano, J. M. Silva, R. F. Achete, C. A. |
author_role |
author |
author2 |
Gomes, J. R. Carrapichano, J. M. Silva, R. F. Achete, C. A. |
author2_role |
author author author author |
dc.contributor.none.fl_str_mv |
Universidade do Minho |
dc.contributor.author.fl_str_mv |
Camargo Junior, S. S. Gomes, J. R. Carrapichano, J. M. Silva, R. F. Achete, C. A. |
dc.subject.por.fl_str_mv |
Amorphous silicon carbide Diamond-like carbon films Si3N4 rings Si N rings 3 4 Science & Technology |
topic |
Amorphous silicon carbide Diamond-like carbon films Si3N4 rings Si N rings 3 4 Science & Technology |
description |
Amorphous silicon carbide (a-SiC) and silicon-incorporated diamond-like carbon films (DLC-Si) were evaluated as protective and friction reduction coatings onto Si3N4 rings. Unlubricated tribological tests were performed with a pin-on-disk apparatus against stainless steel pins with loads ranging from 3 N to 55 N and sliding velocities from 0.2 m/s to 1.0 m/s under ambient air and 50-60% relative humidity. At the lowest loads, a-SiC coatings present a considerable improvement with respect to the behavior of uncoated disks since the friction coefficient is reduced to about 0.2 and the system is able to run stably for thousands of meters. At higher loads, however, a-SiC coatings fail. DLC-Si coated rings, on the other hand, presented for loads up to 10 N a steady state friction coefficient below 0.1 and very low wear rates. The lowest steady-state mean friction coefficient value of only 0.055 was obtained with a sliding velocity of 0.5 m/s. For higher loads in the range of 20 N the friction coefficient drops to values around 0.1 but no steady state is reached. For the highest loads of over 50 N a catastrophic behavior is observed. Typically, wear rates below 5 x 10-6 mm3/N.m and 2 x 10-7 mm3/N.m were obtained for the ceramic rings and pins, respectively, with a load of 10 N and a sliding velocity of 0.5 m/s. Analysis of the steel pin contact surface by SEM-EDS and Auger spectroscopy revealed the formation of an adherent tribo-layer mainly composed by Si, C and O. The unique structure of DLC-Si films is thought to be responsible for the formation of the tribo-layer. |
publishDate |
2005 |
dc.date.none.fl_str_mv |
2005-11 2005-11-01T00:00:00Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/1822/6132 |
url |
http://hdl.handle.net/1822/6132 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
"Thin solid films". ISSN 0040-6090. 482:2 (Nov. 2005) 221-225. 0040-6090 10.1016/j.tsf.2004.11.149 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier |
publisher.none.fl_str_mv |
Elsevier |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799132443153793024 |