Hybrid organic-inorganic borosilicate materials by sol-gel for bone tissue engineering

Detalhes bibliográficos
Autor(a) principal: Coelho, Soraia Alexandra Ramos
Data de Publicação: 2018
Tipo de documento: Dissertação
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10773/25818
Resumo: Polydimethylsiloxane (PDMS) - SiO2 - CaO based hybrid materials, prepared by sol-gel, have proven to be very promising materials in tissue engineering applications and drug delivery systems. These hybrid materials present biocompatible, osteogenic and bioactive properties, that will support osteoblast attachment and bone growth. The incorporation of therapeutic ions, such as boron (B), is known to stimulate bone regeneration and angiogenesis, which makes it an alternative to the use of vascular growth factors, due to its low cost, high stability and potentially greater safety. The combination of such ions in hybrid materials prepared by the sol-gel method is a novelty. The main purpose of this work was to produce, by sol-gel method, bioactive and biocompatible hybrid materials within the system PDMS-SiO2-B2O3-CaO capable of releasing calcium and boron to stimulate angiogenesis. Another purpose was to achieve a better understanding of the effect of boron in the structure and microstructure of this material. For that, five different compositions with different amounts of boron were prepared using the same precursors and sol-gel route, resulting in different monolithic materials, with distinct structures and microstructures. The material’s structure was analysed by Fourier Transform Infrared Spectrometry (FT-IR) and solid state Nuclear Magnetic Resonance (NMR) techniques, that expose the presence of hybrid bonds (Si-O-Si) between organic (PDMS) and inorganic phase (TEOS), as well as borosiloxane bonds (B-O-Si). From the results of nuclear magnetic resonance of 11B it was found that the presence of the modifier ion (calcium) in the compositions changes the boron coordination, from trigonal (BO3) to tetrahedral (BO4). These groups are attached to silicon. Thus, it was verified that the increase of boron amount in the system led to a decrease in the specific surface area (SSA), obtained by BET method, as well as the mesoporosity of the material. On the other hand, SEM micrography’s showed an increase in macroporosity with the boron concentration. The bioactivity tests performed in vitro by immersion of the materials in Kokukos’s simulated body fluid (SBF), demonstrated that the material was able to form a layer of calcium phosphate on its surface, and to release therapeutic ions in the supernatant liquid. Thus, this suggests the potential of these materials to be used in the field of tissue regeneration. The relationship among structure, microstructure and ion release were discussed aiming the identification of the formulations that will continue for further studies with specific angiogenesis-related cell lines
id RCAP_a31da9fae56de6a87259fc8918d2b896
oai_identifier_str oai:ria.ua.pt:10773/25818
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Hybrid organic-inorganic borosilicate materials by sol-gel for bone tissue engineeringHybrid materialsPolydimetilsiloxaneBorosilicateSol-gelBioactivityCytocompatibilityAngiogenesisPolydimethylsiloxane (PDMS) - SiO2 - CaO based hybrid materials, prepared by sol-gel, have proven to be very promising materials in tissue engineering applications and drug delivery systems. These hybrid materials present biocompatible, osteogenic and bioactive properties, that will support osteoblast attachment and bone growth. The incorporation of therapeutic ions, such as boron (B), is known to stimulate bone regeneration and angiogenesis, which makes it an alternative to the use of vascular growth factors, due to its low cost, high stability and potentially greater safety. The combination of such ions in hybrid materials prepared by the sol-gel method is a novelty. The main purpose of this work was to produce, by sol-gel method, bioactive and biocompatible hybrid materials within the system PDMS-SiO2-B2O3-CaO capable of releasing calcium and boron to stimulate angiogenesis. Another purpose was to achieve a better understanding of the effect of boron in the structure and microstructure of this material. For that, five different compositions with different amounts of boron were prepared using the same precursors and sol-gel route, resulting in different monolithic materials, with distinct structures and microstructures. The material’s structure was analysed by Fourier Transform Infrared Spectrometry (FT-IR) and solid state Nuclear Magnetic Resonance (NMR) techniques, that expose the presence of hybrid bonds (Si-O-Si) between organic (PDMS) and inorganic phase (TEOS), as well as borosiloxane bonds (B-O-Si). From the results of nuclear magnetic resonance of 11B it was found that the presence of the modifier ion (calcium) in the compositions changes the boron coordination, from trigonal (BO3) to tetrahedral (BO4). These groups are attached to silicon. Thus, it was verified that the increase of boron amount in the system led to a decrease in the specific surface area (SSA), obtained by BET method, as well as the mesoporosity of the material. On the other hand, SEM micrography’s showed an increase in macroporosity with the boron concentration. The bioactivity tests performed in vitro by immersion of the materials in Kokukos’s simulated body fluid (SBF), demonstrated that the material was able to form a layer of calcium phosphate on its surface, and to release therapeutic ions in the supernatant liquid. Thus, this suggests the potential of these materials to be used in the field of tissue regeneration. The relationship among structure, microstructure and ion release were discussed aiming the identification of the formulations that will continue for further studies with specific angiogenesis-related cell linesMateriais híbridos baseados no sistema polidimetilsiloxano (PDMS)-SiO2-CaO, preparados por sol-gel, têm-se revelado um grupo de biomateriais promissores em várias aplicações desde a regeneração de tecidos ósseos a sistemas de libertação de fármacos. Estes híbridos são biocompatíveis e possuem propriedades bioativas e osteogénicas que possibilitam a fixação dos osteoblastos e o crescimento do tecido ósseo. Para além do cálcio, a incorporação de iões terapêuticos, como o boro (B), permite estimular a regeneração óssea e angiogénese, tornando-se uma alternativa ao uso de fatores de crescimento angiogénicos. A combinação destes iões no material híbrido orgânico-inorgânico preparado pelo método sol-gel é uma novidade. Desta forma, o presente trabalho teve como objetivo produzir um material híbrido bioativo e biocompatível, baseado no sistema PDMS-SiO2-B2O3-CaO capaz de libertar iões de cálcio e boro a fim de estimular a angiogénese. Com isto surgiu a necessidade de entender o efeito do boro e do cálcio na estrutura e microestrutura do material e, consequentemente, a influência destes na atividade biológica. Para alcançar tais objetivos, cinco composições diferentes com concentrações de boro distintas foram preparadas, usando os mesmos precursores e técnica de sol-gel. Os materiais resultantes apresentavam-se na forma de monólito e com diferentes estruturas e microestruturas entre eles. Da análise estrutural do material, que foi realizada por espectroscopia de Infravermelhos por Transformada de Fourier (FT-IR) e por Ressonância Nuclear Magnética (NMR), verificou-se a presença de ligações híbridas (Si-O-Si) entre a fase orgânica (PDMS) e a fase inorgânica (TEOS), assim como ligações características de borosiloxano (B-O-Si). A partir dos resultados de ressonância nuclear magnética do boro (11B) verificou-se que a presença do ião modificador (cálcio) nas composições faz alterar a coordenação do boro, de trigonal (BO3) para tetraédrico (BO4), e que estes encontram-se ligados ao silício. Verificou-se que o aumento da concentração de boro no sistema híbrido tem como consequência a diminuição dos valores da área superficial especifica (SSA), obtidos pela técnica de Brunauer-Emmet-Teller (BET), assim como da mesoporosidade do material. Por outro lado, as micrografias, obtidas por Microscopia Eletrónica de Varrimento (SEM), mostraram um aumento da macroporosidade com a adição do boro. Os testes de bioatividade realizados in vitro, por imersão do material num fluído corporal simulado (SBF), revelaram a capacidade do material em se degradar, libertando iões de cálcio e boro no líquido sobrenadante, assim como em depositar uma camada de fosfato de cálcio à superfície, sugerindo bioatividade. Isto sugere o potencial destes materiais híbridos para serem utilizados na área da regeneração de tecidos ósseos. A relação entre a estrutura, microestrutura e libertação iónica foram discutidas de forma a identificar as formulações que irão continuar para posteriores estudos com linhas celulares específicas relacionadas com a angiogénese2020-12-18T00:00:00Z2018-12-18T00:00:00Z2018-12-18info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10773/25818TID:202233294engCoelho, Soraia Alexandra Ramosinfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-02-22T11:50:02Zoai:ria.ua.pt:10773/25818Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T02:58:58.752991Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Hybrid organic-inorganic borosilicate materials by sol-gel for bone tissue engineering
title Hybrid organic-inorganic borosilicate materials by sol-gel for bone tissue engineering
spellingShingle Hybrid organic-inorganic borosilicate materials by sol-gel for bone tissue engineering
Coelho, Soraia Alexandra Ramos
Hybrid materials
Polydimetilsiloxane
Borosilicate
Sol-gel
Bioactivity
Cytocompatibility
Angiogenesis
title_short Hybrid organic-inorganic borosilicate materials by sol-gel for bone tissue engineering
title_full Hybrid organic-inorganic borosilicate materials by sol-gel for bone tissue engineering
title_fullStr Hybrid organic-inorganic borosilicate materials by sol-gel for bone tissue engineering
title_full_unstemmed Hybrid organic-inorganic borosilicate materials by sol-gel for bone tissue engineering
title_sort Hybrid organic-inorganic borosilicate materials by sol-gel for bone tissue engineering
author Coelho, Soraia Alexandra Ramos
author_facet Coelho, Soraia Alexandra Ramos
author_role author
dc.contributor.author.fl_str_mv Coelho, Soraia Alexandra Ramos
dc.subject.por.fl_str_mv Hybrid materials
Polydimetilsiloxane
Borosilicate
Sol-gel
Bioactivity
Cytocompatibility
Angiogenesis
topic Hybrid materials
Polydimetilsiloxane
Borosilicate
Sol-gel
Bioactivity
Cytocompatibility
Angiogenesis
description Polydimethylsiloxane (PDMS) - SiO2 - CaO based hybrid materials, prepared by sol-gel, have proven to be very promising materials in tissue engineering applications and drug delivery systems. These hybrid materials present biocompatible, osteogenic and bioactive properties, that will support osteoblast attachment and bone growth. The incorporation of therapeutic ions, such as boron (B), is known to stimulate bone regeneration and angiogenesis, which makes it an alternative to the use of vascular growth factors, due to its low cost, high stability and potentially greater safety. The combination of such ions in hybrid materials prepared by the sol-gel method is a novelty. The main purpose of this work was to produce, by sol-gel method, bioactive and biocompatible hybrid materials within the system PDMS-SiO2-B2O3-CaO capable of releasing calcium and boron to stimulate angiogenesis. Another purpose was to achieve a better understanding of the effect of boron in the structure and microstructure of this material. For that, five different compositions with different amounts of boron were prepared using the same precursors and sol-gel route, resulting in different monolithic materials, with distinct structures and microstructures. The material’s structure was analysed by Fourier Transform Infrared Spectrometry (FT-IR) and solid state Nuclear Magnetic Resonance (NMR) techniques, that expose the presence of hybrid bonds (Si-O-Si) between organic (PDMS) and inorganic phase (TEOS), as well as borosiloxane bonds (B-O-Si). From the results of nuclear magnetic resonance of 11B it was found that the presence of the modifier ion (calcium) in the compositions changes the boron coordination, from trigonal (BO3) to tetrahedral (BO4). These groups are attached to silicon. Thus, it was verified that the increase of boron amount in the system led to a decrease in the specific surface area (SSA), obtained by BET method, as well as the mesoporosity of the material. On the other hand, SEM micrography’s showed an increase in macroporosity with the boron concentration. The bioactivity tests performed in vitro by immersion of the materials in Kokukos’s simulated body fluid (SBF), demonstrated that the material was able to form a layer of calcium phosphate on its surface, and to release therapeutic ions in the supernatant liquid. Thus, this suggests the potential of these materials to be used in the field of tissue regeneration. The relationship among structure, microstructure and ion release were discussed aiming the identification of the formulations that will continue for further studies with specific angiogenesis-related cell lines
publishDate 2018
dc.date.none.fl_str_mv 2018-12-18T00:00:00Z
2018-12-18
2020-12-18T00:00:00Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10773/25818
TID:202233294
url http://hdl.handle.net/10773/25818
identifier_str_mv TID:202233294
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799137643980652544