Minimal time delivery of multiple robots

Detalhes bibliográficos
Autor(a) principal: Miguel Aguiar
Data de Publicação: 2020
Outros Autores: Jorge Estrela da Silva, João Tasso Sousa
Tipo de documento: Livro
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: https://hdl.handle.net/10216/133511
Resumo: Consider a set of autonomous vehicles, each one with a preassigned task to start at a given region. Due to energy constraints, and in order to minimize the overall task completion time, these vehicles are deployed from a faster carrier vehicle. This paper develops a dynamic programming (DP) based solution for the problem of finding the optimal deployment location and time for each vehicle, and for a given sequence of deployments, so that the global mission duration is minimal. The problem is specialized for ocean-going vehicles operating under time-varying currents. The solution approach involves solving a sequence of optimal stopping problems that are transformed into a set variational inequalities through the application of the dynamic programming principle (DPP). The optimal trajectory for the carrier and the optimal deployment location and time for each vehicle to be deployed are obtained in feedback-form from the numerical solution of the variational inequalities. The solution is computed with our open source parallel implementation of the fast sweeping method. The approach is illustrated with two numerical examples.
id RCAP_a3e886f01b566095ea81f33105f4151b
oai_identifier_str oai:repositorio-aberto.up.pt:10216/133511
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Minimal time delivery of multiple robotsConsider a set of autonomous vehicles, each one with a preassigned task to start at a given region. Due to energy constraints, and in order to minimize the overall task completion time, these vehicles are deployed from a faster carrier vehicle. This paper develops a dynamic programming (DP) based solution for the problem of finding the optimal deployment location and time for each vehicle, and for a given sequence of deployments, so that the global mission duration is minimal. The problem is specialized for ocean-going vehicles operating under time-varying currents. The solution approach involves solving a sequence of optimal stopping problems that are transformed into a set variational inequalities through the application of the dynamic programming principle (DPP). The optimal trajectory for the carrier and the optimal deployment location and time for each vehicle to be deployed are obtained in feedback-form from the numerical solution of the variational inequalities. The solution is computed with our open source parallel implementation of the fast sweeping method. The approach is illustrated with two numerical examples.2020-12-182020-12-18T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/bookapplication/pdfhttps://hdl.handle.net/10216/133511eng10.1109/cdc42340.2020.9304510Miguel AguiarJorge Estrela da SilvaJoão Tasso Sousainfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-11-29T12:33:30Zoai:repositorio-aberto.up.pt:10216/133511Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T23:22:33.788523Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Minimal time delivery of multiple robots
title Minimal time delivery of multiple robots
spellingShingle Minimal time delivery of multiple robots
Miguel Aguiar
title_short Minimal time delivery of multiple robots
title_full Minimal time delivery of multiple robots
title_fullStr Minimal time delivery of multiple robots
title_full_unstemmed Minimal time delivery of multiple robots
title_sort Minimal time delivery of multiple robots
author Miguel Aguiar
author_facet Miguel Aguiar
Jorge Estrela da Silva
João Tasso Sousa
author_role author
author2 Jorge Estrela da Silva
João Tasso Sousa
author2_role author
author
dc.contributor.author.fl_str_mv Miguel Aguiar
Jorge Estrela da Silva
João Tasso Sousa
description Consider a set of autonomous vehicles, each one with a preassigned task to start at a given region. Due to energy constraints, and in order to minimize the overall task completion time, these vehicles are deployed from a faster carrier vehicle. This paper develops a dynamic programming (DP) based solution for the problem of finding the optimal deployment location and time for each vehicle, and for a given sequence of deployments, so that the global mission duration is minimal. The problem is specialized for ocean-going vehicles operating under time-varying currents. The solution approach involves solving a sequence of optimal stopping problems that are transformed into a set variational inequalities through the application of the dynamic programming principle (DPP). The optimal trajectory for the carrier and the optimal deployment location and time for each vehicle to be deployed are obtained in feedback-form from the numerical solution of the variational inequalities. The solution is computed with our open source parallel implementation of the fast sweeping method. The approach is illustrated with two numerical examples.
publishDate 2020
dc.date.none.fl_str_mv 2020-12-18
2020-12-18T00:00:00Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/book
format book
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://hdl.handle.net/10216/133511
url https://hdl.handle.net/10216/133511
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 10.1109/cdc42340.2020.9304510
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799135526251397120