A one-dimensional prescribed curvature equation modeling the corneal shape
Autor(a) principal: | |
---|---|
Data de Publicação: | 2014 |
Outros Autores: | , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10400.21/4536 |
Resumo: | We prove existence, uniqueness, and stability of solutions of the prescribed curvature problem (u'/root 1 + u'(2))' = au - b/root 1 + u'(2) in [0, 1], u'(0) = u(1) = 0, for any given a > 0 and b > 0. We also develop a linear monotone iterative scheme for approximating the solution. This equation has been proposed as a model of the corneal shape in the recent paper (Okrasinski and Plociniczak in Nonlinear Anal., Real World Appl. 13:1498-1505, 2012), where a simplified version obtained by partial linearization has been investigated. |
id |
RCAP_a464ddc21e9ac542ea04f7518bcccd31 |
---|---|
oai_identifier_str |
oai:repositorio.ipl.pt:10400.21/4536 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
A one-dimensional prescribed curvature equation modeling the corneal shapeMean curvature equationMixed boundary conditionPositive solutionExistenceUniquenessLinear stabilityOrder stabilityLyapunov stabilityLower and upper solutionsMonotone approximationTopological degreeWe prove existence, uniqueness, and stability of solutions of the prescribed curvature problem (u'/root 1 + u'(2))' = au - b/root 1 + u'(2) in [0, 1], u'(0) = u(1) = 0, for any given a > 0 and b > 0. We also develop a linear monotone iterative scheme for approximating the solution. This equation has been proposed as a model of the corneal shape in the recent paper (Okrasinski and Plociniczak in Nonlinear Anal., Real World Appl. 13:1498-1505, 2012), where a simplified version obtained by partial linearization has been investigated.Springer International Publishing AGRCIPLCoelho, Maria Isabel EstevesCorsato, ChiaraOmari, Pierpaolo2015-05-14T10:58:38Z2014-052014-05-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10400.21/4536engCOELHO, Maria Isabel Esteves; CORSATO, Chiara; OMARI, Pierpaolo - A one-dimensional prescribed curvature equation modeling the corneal shape. Boundary Value Problems. (2014)1687-277010.1186/1687-2770-2014-127info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-08-03T09:46:43Zoai:repositorio.ipl.pt:10400.21/4536Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T20:13:57.314342Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
A one-dimensional prescribed curvature equation modeling the corneal shape |
title |
A one-dimensional prescribed curvature equation modeling the corneal shape |
spellingShingle |
A one-dimensional prescribed curvature equation modeling the corneal shape Coelho, Maria Isabel Esteves Mean curvature equation Mixed boundary condition Positive solution Existence Uniqueness Linear stability Order stability Lyapunov stability Lower and upper solutions Monotone approximation Topological degree |
title_short |
A one-dimensional prescribed curvature equation modeling the corneal shape |
title_full |
A one-dimensional prescribed curvature equation modeling the corneal shape |
title_fullStr |
A one-dimensional prescribed curvature equation modeling the corneal shape |
title_full_unstemmed |
A one-dimensional prescribed curvature equation modeling the corneal shape |
title_sort |
A one-dimensional prescribed curvature equation modeling the corneal shape |
author |
Coelho, Maria Isabel Esteves |
author_facet |
Coelho, Maria Isabel Esteves Corsato, Chiara Omari, Pierpaolo |
author_role |
author |
author2 |
Corsato, Chiara Omari, Pierpaolo |
author2_role |
author author |
dc.contributor.none.fl_str_mv |
RCIPL |
dc.contributor.author.fl_str_mv |
Coelho, Maria Isabel Esteves Corsato, Chiara Omari, Pierpaolo |
dc.subject.por.fl_str_mv |
Mean curvature equation Mixed boundary condition Positive solution Existence Uniqueness Linear stability Order stability Lyapunov stability Lower and upper solutions Monotone approximation Topological degree |
topic |
Mean curvature equation Mixed boundary condition Positive solution Existence Uniqueness Linear stability Order stability Lyapunov stability Lower and upper solutions Monotone approximation Topological degree |
description |
We prove existence, uniqueness, and stability of solutions of the prescribed curvature problem (u'/root 1 + u'(2))' = au - b/root 1 + u'(2) in [0, 1], u'(0) = u(1) = 0, for any given a > 0 and b > 0. We also develop a linear monotone iterative scheme for approximating the solution. This equation has been proposed as a model of the corneal shape in the recent paper (Okrasinski and Plociniczak in Nonlinear Anal., Real World Appl. 13:1498-1505, 2012), where a simplified version obtained by partial linearization has been investigated. |
publishDate |
2014 |
dc.date.none.fl_str_mv |
2014-05 2014-05-01T00:00:00Z 2015-05-14T10:58:38Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10400.21/4536 |
url |
http://hdl.handle.net/10400.21/4536 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
COELHO, Maria Isabel Esteves; CORSATO, Chiara; OMARI, Pierpaolo - A one-dimensional prescribed curvature equation modeling the corneal shape. Boundary Value Problems. (2014) 1687-2770 10.1186/1687-2770-2014-127 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Springer International Publishing AG |
publisher.none.fl_str_mv |
Springer International Publishing AG |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799133396673232896 |